期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Bifurcations, Analytical and Non-Analytical Traveling Wave Solutions of (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq Equation
1
作者 Dahe Feng Jibin Li Airen Zhou 《Applied Mathematics》 2024年第8期543-567,共25页
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ... For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation. 展开更多
关键词 (2 + 1)-Dimensional nonlinear Dispersive boussinesq Equation BIFURCATIONS Phase Portrait Analytical Periodic Wave Solution Periodic Cusp Wave Solution
下载PDF
Fully Nonlinear Shallow Water Waves Simulation Using Green-Naghdi Theory
2
作者 赵彬彬 段文洋 《Journal of Marine Science and Application》 2010年第1期1-7,共7页
Green-Naghdi (G-N) theory is a fully nonlinear theory for water waves. Some researchers call it a fully nonlinear Boussinesq model. Different degrees of complexity of G-N theory are distinguished by "levels" where... Green-Naghdi (G-N) theory is a fully nonlinear theory for water waves. Some researchers call it a fully nonlinear Boussinesq model. Different degrees of complexity of G-N theory are distinguished by "levels" where the higher the level, the more complicated and presumably more accurate the theory is. In the research presented here a comparison was made between two different levels of G-N theory, specifically level II and level III G-N restricted theories. A linear analytical solution for level III G-N restricted theory was given. Waves on a planar beach and shoaling waves were both simulated with these two G-N theories. It was shown for the first time that level III G-N restricted theory can also be used to predict fluid velocity in shallow water. A level III G-N restricted theory is recommended instead of a level II G-N restricted theory when simulating fullv nonlinear shallow water waves. 展开更多
关键词 Green-Naghdi theory boussinesq model fully nonlinear water waves shoaling waves
下载PDF
A THIRD-ORDER BOUSSINESQ MODEL APPLIED TO NONLINEAR EVOLUTION OF SHALLOW-WATER WAVES 被引量:7
3
作者 Zhang Ying long CCM MINDEF, Department of Mech. and Prod. Eng., National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 Zhu Song ping Department of Mathematics, the University of Wollongong, Wollongong, NSW 2522, Australia 《Journal of Hydrodynamics》 SCIE EI CSCD 2000年第2期107-126,共20页
The conventional Boussinesq model is extended to the third order in dispersion and nonlinearity. The new equations are shown to possess better linear dispersion characteristics. For the evolution of periodic waves ove... The conventional Boussinesq model is extended to the third order in dispersion and nonlinearity. The new equations are shown to possess better linear dispersion characteristics. For the evolution of periodic waves over a constant depth, the computed wave envelops are spatially aperiodic and skew. The model is then applied to the study of wave focusing by a topographical lens and the results are compared with Whalin′s (1971) experimental data as well as some previous results from the conventional Boussinesq model. Encouragingly, improved agreement with Whalin′s experimental data is found. [WT5”HZ] 展开更多
关键词 shallow water waves nonlinearity evolution third order boussinesq model
原文传递
One-dimensional numerical models of higher-order Boussinesq equations with high dispersion accuracy 被引量:10
4
作者 ZouZhili WangTao +1 位作者 ZhangXiaoli DarrenSpratt 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2003年第2期287-300,共14页
Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of the wave propagation model of higher-order Boussinesq equations derived by Zou (2000, Ocean En... Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of the wave propagation model of higher-order Boussinesq equations derived by Zou (2000, Ocean Engineering, 27, 557 - 575) is investigated. Physical experiments are conducted; three different front slopes (1:10, 1 = 5 and 1:2) of the shelf are set-up in the experiment and their effects on the wave propagation are investigated. Comparisons of the numerical results with test data are made and the higher-order Boussinesq equations agree well with the measurements since the dispersion of the model is of high accuracy. The numerical results show that the good results can also be obtained for the steep-slope cases although the mild-slope assumption is employed in the derivation of the higher-order terms in the higher-order Boussinesq equations. 展开更多
关键词 water waves boussinesq nonlinear dispersion
下载PDF
High-Order Models of Nonlinear and Dispersive Wave in Water of Varying Depth with Arbitrary Sloping Bottom 被引量:26
5
作者 Hong Guangwen Professor, Coastal and Ocean Engineering Research Institute, Hohai University, Nanjing 210024, P. R. China. 《China Ocean Engineering》 SCIE EI 1997年第3期243-260,共18页
High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of ... High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep). 展开更多
关键词 nonlinear wave dispersive wave high order models boussinesq-type equations varying depth arbitrary sloping bottom
下载PDF
Numerical Models of Higher-Order Boussinesq Equations and Comparisons with Laboratory Measurement 被引量:5
6
作者 邹志利 张晓莉 《China Ocean Engineering》 SCIE EI 2001年第2期229-240,共12页
Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq eq... Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq equations derived by Zou (1999) and the other is the classic Boussinesq equations, Physical experiments are conducted, three different front slopes (1:10, 1:5 and 1:2) of the shelf are set up in the experiment and their effects on wave propagation are investigated. Comparisons of numerical results with test data are made, the model of higher-order Boussinesq equations agrees much better with the measurements than the model of the classical Boussinesq equations, The results show that the higher-order Boussinesq equations can also be applied to the steeper slope case although the mild slope assumption is employed in the derivation of the higher order terms of higher order Boussinesq equations. 展开更多
关键词 numerical model water wares boussinesq equations nonlinear dispersion
下载PDF
Nonclassical Symmetries for Nonlinear Partial Differential Equations via Compatibility 被引量:8
7
作者 Mostafa F.El-Sabbagh Ahmad T.Ali 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第10期611-616,共6页
The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the... The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The (2+1)-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples i11ustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries. 展开更多
关键词 nonclassical symmetriesm compatibility (2+ 1)-dimensional shallow water wave boussinesq equa-tions and the dispersive wave equations in shallow water
下载PDF
A New Approach to High-Order Boussinesq-Type Equations with Ambient Currents 被引量:5
8
作者 王亚玲 张洪生 +1 位作者 缪国平 朱良生 《China Ocean Engineering》 SCIE EI 2005年第1期49-60,共12页
A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wav... A new approach to high-order Boussinesq-type equations with ambient currents is presented. The current velocity is assumed to be uniform over depth and of the same magnitude as the shallow water wave celerity. The wave velocity field is expressed in terms of the horizontal and vertical wave velocity components at an arbitrary water depth level. Linear operators are introduced to improve the accuracy of the kinematic condition at the sea bottom. The dynamic and kinematic conditions at the free surface are expressed in terms of wave velocity variables defined directly on the free surface. The new equations provide high accuracy of linear properties as well as nonlinear properties from shallow to deep water, and extend the applicable range of relative water depth in the case of opposing currents. 展开更多
关键词 boussinesq-type equations wave-current interaction dispersion properties shoaling characteristics nonlinear properties Padé approximation
下载PDF
Comparison between characteristics of mild slope equations and Boussinesq equations
9
作者 LI Ruijie ZHANG Suxiang ZHANG Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第4期131-137,共7页
Boussinesq-type equations and mild-slope equations are compared in terms of their basic forms and characteristics. It is concluded that linear mild-slope equations on dispersion relation are better than non-linear Bou... Boussinesq-type equations and mild-slope equations are compared in terms of their basic forms and characteristics. It is concluded that linear mild-slope equations on dispersion relation are better than non-linear Boussinesq equations. In addition, Berkhoffexperiments are computed and compared by the two models, and agreement between model results and available experimental data is found to be quite reasonable, which demonstrates the two models' capacity to simulate wave transformation. However they can deal with different physical processes respectively, and they have their own characteristics. 展开更多
关键词 boussinesq equations mild-slope equations wave transformation dispersion relation nonlinearITY
下载PDF
浮体浅水非线性波动问题的 Boussinesq 方程求解方法
10
作者 林建国 陶尧森 《上海交通大学学报》 EI CAS CSCD 北大核心 1997年第2期41-45,共5页
提出一种求解浮体波动问题的新方法,即将浮体与流体接触的物面作为自由表面处理,Bousinesq方程用于此类问题的全域直接求解.为验证其可行性,计算了浅水孤立波对固定浮体的反射与透射问题,与已有结果吻合得很好,表明新方... 提出一种求解浮体波动问题的新方法,即将浮体与流体接触的物面作为自由表面处理,Bousinesq方程用于此类问题的全域直接求解.为验证其可行性,计算了浅水孤立波对固定浮体的反射与透射问题,与已有结果吻合得很好,表明新方法是可行的. 展开更多
关键词 浮体 浅水 非线性 boussinesq方程 波动问题
下载PDF
A fully nonlinear and weakly dispersive water wave model for simulating the propagation,interaction,and transformation of solitary waves 被引量:1
11
作者 Zhengyong Zhong Keh-Han Wang 《Journal of Hydrodynamics》 SCIE EI CSCD 2019年第6期1099-1114,共16页
This paper presents the development of a theoretical model of fully nonlinear and weakly dispersive(FNWD)waves and numerical techniques for simulating the propagation,interaction,and transformation of solitary waves.U... This paper presents the development of a theoretical model of fully nonlinear and weakly dispersive(FNWD)waves and numerical techniques for simulating the propagation,interaction,and transformation of solitary waves.Using the standard expansion method and without the limit of small nonlinear parameter defined as the ratio of the wave height versus water depth,a set of model equations describing the FNWD waves in a domain of moderately varying bottom topography are formulated.Exact solitary wave solutions satisfying the FNWD equations are also derived.Numerically,a time-accurate and stabilized finite-element code to solve the governing equations is developed for wave simulations.The solitary wave solutions of FNWD,weakly nonlinear and weakly dispersive(WNWD),and Laplace equations based models in terms of wave profile and phase speed are compared to examine their related features and differences.Investigations on the overtaking collision of two unidirectional solitary waves of different amplitudes,i.e.,ax and a2 where a1>a2,are carried out using both the FNWD and WNWD water wave models.Selected cases by running the FNWD and WNWD models are performed to identify the critical values of a1/a2 for forming a flattened merging wave peak,which is the condition used to determine if the stronger wave is to pass through the weaker one or both waves are to remain separated during the encountering process.It is interesting to note the critical values of a1/a2 obtained from the FNWD and WNWD models are found to be different and greater than the value of 3 proposed by Wu through the theoretical analysis of the Korteweg-de Vries(KdV)equations.Finally,the phenomena of wave splitting and nonlinear focusing of a solitary wave propagating over a three-dimensional semicircular shoal are simulated.The results obtained from both the FNWD and WNWD models showing the fission process of separating a main solitary wave into multiple waves of decreasing amplitudes are presented,compared,and discussed. 展开更多
关键词 Fully nonlinear and weakly dispersive waves overtaking collision boussinesq models solitary waves finite-element method wave shoaling
原文传递
Nonlinear Effect of Wave Propagation in Shallow Water 被引量:3
12
作者 Li, RJ Wang, HJ 《China Ocean Engineering》 SCIE EI 1999年第1期109-114,共6页
In this paper, a nonlinear model is presented to describe wave transformation in shallow water with the zero- vorticity equation of wave- number vector and energy conservation equation. The nonlinear effect due to an ... In this paper, a nonlinear model is presented to describe wave transformation in shallow water with the zero- vorticity equation of wave- number vector and energy conservation equation. The nonlinear effect due to an empirical dispersion relation (by Hedges) is compared with that of Dalrymple's dispersion relation. The model is tested against the laboratory measurements for the case of a submerged elliptical shoal on a slope beach, where both refraction and diffraction are significant. The computation results, compared with those obtained through linear dispersion relation, show that the nonlinear effect of wave transformation in shallow water is important. And the empirical dispersion relation is suitable for researching the nonlinearity of wave in shallow water. 展开更多
关键词 wave propagation shallow water nonlinearITY refraction and diffraction empirical dispersion relation
下载PDF
The Riemann Problem for the Dispersive Nonlinear Shallow Water Equations
13
作者 Giovanna Grosso Matteo Antuono Eleuterio Toro 《Communications in Computational Physics》 SCIE 2010年第1期64-102,共39页
The complete analytical solution of the Riemann problem for the homo-geneous Dispersive Nonlinear Shallow Water Equations [Antuono, Liapidevskii andBrocchini, Stud. Appl. Math., 122 (2009), pp. 1-28] is presented, for... The complete analytical solution of the Riemann problem for the homo-geneous Dispersive Nonlinear Shallow Water Equations [Antuono, Liapidevskii andBrocchini, Stud. Appl. Math., 122 (2009), pp. 1-28] is presented, for both wet-bed anddry-bed conditions. Moreover, such a set of hyperbolic and dispersive depth-averagedequations shows an interesting resonance phenomenon in the wave pattern of the solu-tion and we define conditions for the occurrence of resonance and present an algorithmto capture it. As an indirect check on the analytical solution we have carried out a de-tailed comparison with the numerical solution of the government equations obtainedfrom a dissipative method that does not make explicit use of the solution of the localRiemann problem. 展开更多
关键词 Riemann problem Dispersive nonlinear Shallow water Equations compound waves RESONANCE
原文传递
高阶Boussinesq水波方程数值模型及其与实验结果的对比 被引量:13
14
作者 邹志利 张晓莉 《水动力学研究与进展(A辑)》 CSCD 北大核心 2002年第5期592-603,共12页
本文建立了基于预报 校正差分格式的高阶Boussinesq方程[1] 数值模型 ,进行了有沙坝地形上非线性波浪传播的物理模型实验 ,检验了数值模型和高阶Boussinesq方程的精度。研究了非线性波浪在有沙坝地形上传播的特性 ,分析沙坝坡度和水深... 本文建立了基于预报 校正差分格式的高阶Boussinesq方程[1] 数值模型 ,进行了有沙坝地形上非线性波浪传播的物理模型实验 ,检验了数值模型和高阶Boussinesq方程的精度。研究了非线性波浪在有沙坝地形上传播的特性 ,分析沙坝坡度和水深的影响。 展开更多
关键词 波浪 boussinesq方程 非线性水波 色散性
下载PDF
关于波浪Boussinesq方程的研究 被引量:11
15
作者 李孟国 王正林 蒋德才 《青岛海洋大学学报(自然科学版)》 CSCD 北大核心 2002年第3期345-354,共10页
对有关波浪 Boussinesq方程的研究成果进行了系统的归纳总结和评述 。
关键词 波浪 boussinesq方程 非线性 色散性能 变浅作用性能
下载PDF
基于Boussinesq方程的波浪模型 被引量:6
16
作者 马小舟 董国海 滕斌 《力学学报》 EI CSCD 北大核心 2006年第6期760-766,共7页
从欧拉方程出发,提供了另一种推导完全非线性Boussinesq方程的方法,并对方程的线性色散关系和线性变浅率进行了改进.改进后方程的线性色散关系达到了一阶Stokes波色散关系的Padé[4,4]近似,在相对水深达1.0的强色散波浪时仍保持... 从欧拉方程出发,提供了另一种推导完全非线性Boussinesq方程的方法,并对方程的线性色散关系和线性变浅率进行了改进.改进后方程的线性色散关系达到了一阶Stokes波色散关系的Padé[4,4]近似,在相对水深达1.0的强色散波浪时仍保持较高的准确性,并且方程的非线性和线性变浅率都得到了不同程度的改善.方程的水平一维形式用预估-校正的有限差分格式求解,建立了一个适合较强非线性波浪的Boussinesq波浪数值模型。作为验证,模拟了波浪在潜堤上的传播变形,计算结果和实验数据的比较发现两者符合良好。 展开更多
关键词 boussinesq模型 色散关系 波浪变形 浅水 表面水波
下载PDF
近似到O(μ~2)阶完全非线性的Boussinesq水波方程 被引量:6
17
作者 刘忠波 房克照 邹志利 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第5期556-561,共6页
为了获得具有更优性能的波浪传播数学模型,对一组近似到O(μ2)阶完全非线性的Boussinesq方程进行了改进,加强过程保留高阶非线性项,改进后的方程色散性能和非线性性能均有提高.该方程可以简化为多个以水深平均速度表达的二阶Boussinesq... 为了获得具有更优性能的波浪传播数学模型,对一组近似到O(μ2)阶完全非线性的Boussinesq方程进行了改进,加强过程保留高阶非线性项,改进后的方程色散性能和非线性性能均有提高.该方程可以简化为多个以水深平均速度表达的二阶Boussinesq类水波方程.理论分析了加强对方程二阶非线性和三阶非线性的影响,并将其同传统加强方式进行了比较,结果表明,含高阶非线性项的加强方式得到的方程性能更好.基于该方程,在非交错网格下建立了基于有限差分方法的高精度数值模型.利用数值模型模拟波浪在潜堤上的传播变形,探讨了2种不同加强方式以及非线性对数值结果的影响,结果表明,加强过程保留高阶非线性的方程模拟结果更佳. 展开更多
关键词 完全非线性 色散性 boussinesq水波方程 O(μ2)阶
下载PDF
新型高阶Boussinesq水波方程 被引量:5
18
作者 刘忠波 孙昭晨 张日向 《水利学报》 EI CSCD 北大核心 2004年第10期83-88,共6页
从经典的Boussinesq方程出发,引入两个参数并对方程中的部分项进行替换,通过严格的数学推导给出量级为O(εμ2)的高阶非线性项,得到一种新型的高阶Boussinesq方程。该方程的色散关系比经典Boussinesq方程提高了一阶,变浅作用性能也得到... 从经典的Boussinesq方程出发,引入两个参数并对方程中的部分项进行替换,通过严格的数学推导给出量级为O(εμ2)的高阶非线性项,得到一种新型的高阶Boussinesq方程。该方程的色散关系比经典Boussinesq方程提高了一阶,变浅作用性能也得到了改善,方程的适用范围由浅水达到中等水深。利用Crank Nicloson格式的有限差分法对方程进行数值模型在一维方向上进行离散计算,建立了高阶Boussinesq方程的数值模型。为验证数值模型的正确性,将数值计算结果与Zou等(2001)的物模试验结果以及Beji与Nadaoka方程的数值结果进行对比,本文的数值结果与试验结果吻合程度较好,表明本文方程可适于模拟变水深下的波浪场数值模拟。 展开更多
关键词 色散性 变浅作用 非线性 数值计算
下载PDF
适合极端深水的双层高阶Boussinesq水波方程 被引量:2
19
作者 刘忠波 房克照 孙昭晨 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第8期997-1002,共6页
为精确描述深水强非线性波浪运动,本文推导了适用于极端水深、具有高精度色散和非线性特征的双层Boussinesq水波方程。首先把流体虚拟地划分为上下两层,对上下两层的速度势分别在静水面处和交界面处沿水深做泰勒展开,任一点速度可用此... 为精确描述深水强非线性波浪运动,本文推导了适用于极端水深、具有高精度色散和非线性特征的双层Boussinesq水波方程。首先把流体虚拟地划分为上下两层,对上下两层的速度势分别在静水面处和交界面处沿水深做泰勒展开,任一点速度可用此两处速度表达;其次在两层流体的中间水深位置上选择速度变量,进一步用两个计算水平速度矢量和两个垂向速度分量取代它们,依此速度表达流场内任一水深处的速度;最后结合自由表面的运动学方程和动力学方程、交界面上速度相等以及海底边界条件,推导了双层高阶Boussinesq水波方程。对该方程进行傅立叶分析,方程色散关系式为Padé(18,20),当分层位置为0.12倍静水深时,该方程具有非常优良的线性和非线性性能。在1%误差下,相速度适用水深可达kh=210,沿水深的速度剖面分布最大适用水深可达kh=114,二阶和差频最大适用水深可达kh=103。 展开更多
关键词 boussinesq水波方程 计算速度 色散性 非线性 和差频 速度剖面
下载PDF
缓坡方程与Boussinesq方程特征的分析比较 被引量:1
20
作者 张扬 李瑞杰 +2 位作者 张素香 朱文谨 罗锋 《海洋湖沼通报》 CSCD 北大核心 2005年第2期1-7,共7页
在对缓坡方程和Boussinesq方程研究的基础上,从方程的基本形式和特征以及频散关系等方面对二者进行了分析和比较,明确了线性缓坡方程在频散性上要好于非线性Boussinesq方程。此外还对Boussinesq型模型与抛物型缓坡方程模型在Berkhoff椭... 在对缓坡方程和Boussinesq方程研究的基础上,从方程的基本形式和特征以及频散关系等方面对二者进行了分析和比较,明确了线性缓坡方程在频散性上要好于非线性Boussinesq方程。此外还对Boussinesq型模型与抛物型缓坡方程模型在Berkhoff椭圆地形的计算结果及其精度也进行比较,计算结果与实测数据吻合很好,说明这两种模型都可以用于模拟近岸波浪传播过程所发生的各种变形。但由于各自控制方程对各物理过程的处理不同,因此各有特征。 展开更多
关键词 boussinesq方程 缓坡方程 波浪变形 频散性 非线性
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部