Electricity-driven water splitting to produce hydrogen is one of the most efficient ways to alleviate energy crisis and environmental pollution problems,in which the anodic oxygen evolution reaction(OER)is the key hal...Electricity-driven water splitting to produce hydrogen is one of the most efficient ways to alleviate energy crisis and environmental pollution problems,in which the anodic oxygen evolution reaction(OER)is the key half-reaction of performance-limiting in water splitting.Given the complicated reaction process and surface reconstruction of the involved catalysts under actual working conditions,unraveling the real active sites,probing multiple reaction intermediates and clarifying catalytic pathways through in-situ characterization techniques and theoretical calculations are essential.In this review,we summarize the recent advancements in understanding the catalytic process,unlocking the water oxidation active phase and elucidating catalytic mechanism of water oxidation by various in-situ characterization techniques.Firstly,we introduce conventionally proposed traditional catalytic mechanisms and novel evolutionary mechanisms of OER,and highlight the significance of optimal catalytic pathways and intrinsic stability.Next,we provide a comprehensive overview of the fundamental working principles,different detection modes,applicable scenarios,and limitations associated with the in-situ characterization techniques.Further,we exemplified the in-situ studies and discussed phase transition detection,visualization of speciation evolution,electronic structure tracking,observation of reaction active intermediates,and monitoring of catalytic products,as well as establishing catalytic structure-activity relationships and catalytic mechanism.Finally,the key challenges and future perspectives for demystifying the water oxidation process are briefly proposed.展开更多
Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy...Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy to produce an efficient OER catalyst that can boost industrial-scale water splitting.Molecular-level phosphate(-PO_(4))group is introduced to modify the surface of PrBa_(0.5)Ca_(0.5)Co_(2)O_(5)+δ(PBCC).The achieved catalyst(PO_(4)-PBCC)exhibits significantly enhanced catalytic performance in alkaline media.Based on the X-ray absorption spectroscopy results and density functional theory(DFT)calculations,the PO_(4)on the surface,which is regarded as the Lewis base,is the key factor to overcome the kinetic limitation of the proton transfer process during the OER.The use of the catalyst in a membrane electrode assembly(MEA)is further evaluated for industrial-scale water splitting,and it only needs a low voltage of 1.66 V to achieve a large current density of 1 A cm^(-2).This work provides a new molecular-level strategy to develop highly efficient OER electrocatalysts for industrial applications.展开更多
Single-atom catalysts(SACs)have received significant interest for optimizing metal atom utilization and superior catalytic performance in hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and oxygen redu...Single-atom catalysts(SACs)have received significant interest for optimizing metal atom utilization and superior catalytic performance in hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and oxygen reduction reaction(ORR).In this study,we investigate a range of single-transition metal(STM_(1)=Sc_(1),Ti_(1),V_(1),Cr_(1),Mn_(1),Fe_(1),Co_(1),Ni_(1),Cu_(1),Zr_(1),Nb_(1),Mo_(1),Ru_(1),Rh_(1),Pd_(1),Ag_(1),W_(1),Re_(1),Os_(1),Ir_(1),Pt_(1),and Au_(1))atoms supported on graphyne(GY)surface for HER/OER and ORR using first-principle calculations.Ab initio molecular dynamics(AIMD)simulations and phonon dispersion spectra reveal the dynamic and thermal stabilities of the GY surface.The exceptional stability of all supported STM_(1)atoms within the H1 cavity of the GY surface exists in an isolated form,facilitating the uniform distribution and proper arrangement of single atoms on GY.In particular,Sc_(1),Co_(1),Fe_(1),and Au_(1)/GY demonstrate promising catalytic efficiency in the HER due to idealisticΔG_(H^(*))values via the Volmer-Heyrovsky pathway.Notably,Sc_(1)and Au_(1)/GY exhibit superior HER catalytic activity compared to other studied catalysts.Co_(1)/GY catalyst exhibits higher selectivity and activity for the OER,with an overpotential(0.46 V)comparable to MoC_(2),IrO_(2),and RuO_(2).Also,Rh_(1)and Co_(1)/GY SACs exhibited promising electrocatalysts for the ORR,with an overpotential of 0.36 and0.46 V,respectively.Therefore,Co_(1)/GY is a versatile electrocatalyst for metal-air batteries and water-splitting.This study further incorporates computational analysis of the kinetic potential energy barriers of Co_(1)and Rh_(1)in the OER and ORR.A strong correlation is found between the estimated kinetic activation barriers for the thermodynamic outcomes and all proton-coupled electron transfer steps.We establish a relation for the Gibbs free energy of intermediates to understand the mechanism of SACs supported on STM,/GY and introduce a key descriptor.This study highlights GY as a favorable single-atom support for designing highly active and cost-effective versatile electrocatalysts for practical applications.展开更多
The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.I...The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.In this work,distilled water with different concentration of dissolved oxygen were prepared,and a clear negative correlation between the size of water clus-ters and dissolved oxygen concentration was observed.Besides,a phenomenon of rapid absorption and release of oxygen at the water interfaces was unveiled,suggesting that oxygen molecules predominantly exist at the interfaces of water clusters.Oxygen molecules can move rapidly through the interfaces among water clusters,allowing dissolved oxygen to quickly reach a saturation level at certain partial pressure of oxygen and temperature.Further exploration into the mechanism by molecular dynamics simulations of oxygen and water clusters found that oxygen molecules can only exist stably at the interfaces among water clusters.A semi-empirical formula relating the average number of water molecules in a cluster(n)to ^(17)O NMR half-peak width(W)was summarized:n=0.1 W+0.85.These findings provide a foundation for exploring the structure and properties of water.展开更多
A rice cyclase gene,OsCYL4b,identified as an alternative splice variant of the cyclase gene OsCYL4a,is involved in the regulation of drought stress and oxidative response.Compared with OsCYL4a,OsCYL4b lacks the second...A rice cyclase gene,OsCYL4b,identified as an alternative splice variant of the cyclase gene OsCYL4a,is involved in the regulation of drought stress and oxidative response.Compared with OsCYL4a,OsCYL4b lacks the second exon,which is located in the conserved motif 3,and may be a functionally important site.Our results suggested that OsCYL4b was responsive to multiple abiotic stresses,and was localized to both the cytoplasm and plasma membrane.The overexpression of OsCYL4b resulted in significantly enhanced drought and osmotic stress tolerance,reduced water loss,and increased abscisic acid(ABA)content compared with the wild type(WT).展开更多
Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electr...Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge.Here,an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO_(4)/Co_(3)O_(4)@CC)in a favorable direction to improve the OER performance.Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching,with the formation of a dynamically stable amorphous-crystalline heterostructure.Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co_(3)O_(4) are crucial in enhancing the catalytic performance.Consequently,the reconstructed CoMoO_(4)/Co_(3)O_(4)@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm^(-2) in 1 M KOH,and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices,achieving ultra-long stability for over 500 and 1200 h,respectively.This work provides a promising route for the construction of high-performance electrocatalysts.展开更多
Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON n...Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON nanoparticles are synthesized via heating a vacuum-sealed mixture of KTaO_(3),Ta and NH_(4)Cl.This method possesses multiple advantages in terms of lower calcination parameter,higher N conversion efficiency and superior photocatalytic activity in comparison with the traditional thermal ammonolysis using NH_(3) gas as a nitrogen source.Through the analysis of intermediates produced upon the elevation of heating temperature,a gas-solid-phase reaction between TaCl_(5) and Ta_(2)O_(5) is demonstrated as the final step,which is conducive to decreasing thermal energy barrier and accelerating nitridation process.Precise control of preparation conditions,including calcination temperature and duration,allows for the regulation of surface O/N ratio of TaON particles to unity,resulting in optimized photocat-alytic activity.Photoelectrochemical assessment and intensity modulated photocurrent spectroscopy provide convincing evidence for improved charge transfer effciency of photoexcited holes at TaON surface.A Z-scheme overall water splitting is accomplished by employing the TaON as an effective oxygen evolution photocatalyst,SrTiO_(3):Rh as a hydrogen evolution photocatalyst,and reduced graphene oxide(rGO)as a solid-state electron mediator.This work presents a promising strategy for the synthesis of high-quality oxynitride materials in application to photocatalytic water splitting.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
BACKGROUND Constipation,a highly prevalent functional gastrointestinal disorder,induces a significant burden on the quality of patients'life and is associated with substantial healthcare expenditures.Therefore,ide...BACKGROUND Constipation,a highly prevalent functional gastrointestinal disorder,induces a significant burden on the quality of patients'life and is associated with substantial healthcare expenditures.Therefore,identifying efficient therapeutic modalities for constipation is of paramount importance.Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms.Consequently,we postulate that hydrogen therapy,an emerging and promising intervention,can serve as a safe and efficacious treatment for constipation.AIM To determine whether hydrogen-rich water(HRW)alleviates constipation and its potential mechanism.METHODS Constipation models were established by orally loperamide to Sprague-Dawley rats.Rats freely consumed HRW,and were recorded their 24 h total stool weight,fecal water content,and charcoal propulsion rate.Fecal samples were subjected to 16S rDNA gene sequencing.Serum non-targeted metabolomic analysis,malondialdehyde,and superoxide dismutase levels were determined.Colonic tissues were stained with hematoxylin and eosin,Alcian blue-periodic acid-Schiff,reactive oxygen species(ROS)immunofluorescence,and immunohistochemistry for cell growth factor receptor kit(c-kit),PGP 9.5,sirtuin1(SIRT1),nuclear factor-erythroid-2-related factor 2(Nrf2),and heme oxygenase-1(HO-1).Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1,Nrf2 and HO-1.A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor,EX527,into constipated rats.NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression.RESULTS HRW alleviated constipation symptoms by improving the total amount of stool over 24 h,fecal water content,charcoal propulsion rate,thickness of the intestinal mucus layer,c-kit expression,and the number of intestinal neurons.HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism.HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway.This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats.The serum metabolites,β-leucine(β-Leu)and traumatic acid,were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1.CONCLUSION HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway,modulating gut microbiota and serum metabolites.β-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.展开更多
High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstr...High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstructured catalyst is constructed by depositing NiFe-layered double hydroxides(NiFe-LDH)on the substrate of MXene(V_(2)CT_(x))modified Ni foam(NF),and abbreviated as NiFe-LDH/V_(2)CT_(x)/NF.As demonstrated,owing to the intrinsic negative charge characteristic of V_(2)CT_(x),chlorine ions are denied entry to the interface between NiFeLDH and V_(2)CT_(x)/NF substrate,thus endowing NiFe-LDH/V_(2)CT_(x)/NF catalyst with high corrosion resistance and durable stability for 110 h at 500 mA cm^(-2).Meanwhile,the two-dimensional structure and high electrical conductivity of V_(2)CT_(x) can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer,thereby synergistically promoting the catalytic performance of NiFe-LDH/V_(2)CT_(x)/NF in both deionized water electrolyte(261 m V at 100 m A cm^(-2))and simulated seawater electrolyte(241 mV at 100 mA cm^(-2)).This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.展开更多
Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater...Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater,and reservoir water in the Burqin River Basin of the Altay Mountains,China in 2021,and characterized the oxygen and hydrogen isotope variations in different water bodies via instrumental analytics and modeling.Results showed significant seasonal variations in stable isotope ratios of oxygen and hydrogen(δ18O andδ2H,respectively)and significant differences inδ18O andδ2H among different water bodies.Higherδ18O andδ2H values were mainly found in river water,while groundwater and reservoir water had lower isotope ratios.River water and groundwater showed differentδ18O-δ2H relationships with the local meteoric water line,implying that river water and groundwater are controlled by evaporative enrichment and multi-source recharge processes.The evaporative enrichment experienced by reservoir water was less significant and largely influenced by topography,recharge sources,local moisture cycling,and anthropogenic factors.Higher deuterium excess(d-excess)value of 14.34‰for river water probably represented the isotopic signature of combined contributions from direct precipitation,snow and glacial meltwater,and groundwater recharge.The average annual d-excess values of groundwater(10.60‰)and reservoir water(11.49‰)were similar to the value of global precipitation(10.00‰).The findings contribute to understanding the hydroclimatic information reflected in the month-by-month variations in stable isotopes in different water bodies and provide a reference for the study of hydrological processes and climate change in the Altay Mountains,China.展开更多
Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has ...Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has been often correlated with the activity enhancement.Here,a systematic study on the roles of Fe substitution in activation of perovskite LaNiO_(3)is reported.The substituting Fe content influences both current change tendency and surface reconstruction degree.LaNi_(0.9)Fe_(0.1)O_(3)is found exhibiting a volcano-peak intrinsic activity in both pristine and reconstructed among all substituted perovskites in the LaNi_(1-x)Fe_(x)O_(3)(x=0.00,0.10,0.25,0.50,0.75,1.00)series.The reconstructed LaNi_(0.9)Fe_(0.1)O_(3)shows a higher intrinsic activity than most reported NiFe-based catalysts.Besides,density functional theory calculations reveal that Fe substitution can lower the O 2p level,which thus stabilize lattice oxygen in LaNi0.9Fe0.1O3 and ensure its long-term stability.Furthermore,it is vital interesting that activity of the reconstructed catalysts relied more on the surface chemistry rather than the reconstruction degree.The effect of Fe on the degree of surface reconstruction of the perovskite is decoupled from that on its activity enhancement after surface reconstruction.This finding showcases the importance to customize the surface chemistry of reconstructed catalysts for water oxidation.展开更多
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3...Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.展开更多
Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are stil...Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are still insufficient for high-barrier packaging applications.In this study,oxygen scavenger hydroxyl-terminated polybutadiene(HTPB)and cobalt salt catalyst were incorporated into the PLA/poly(butylene adipate-co-terephthalate)(PLA/PBAT),followed by melting extrusion and three-layer co-extrusion blown film process to prepare the composite films.The oxygen permeability coefficient of the composite film combined with 6 wt%oxygen scavenger and 0.4 wt%catalyst was decreased significantly from 377.00 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1) to 0.98 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1),showing a remarkable enhancement of 384.69 times compared with the PLA/PBAT composite film.Meanwhile,the degradation behavior of the composite film was also accelerated,exhibiting a mass loss of nearly 60%of the original mass after seven days of degradation in an alkaline environment,whereas PLA/PBAT composite film only showed a mass loss of 32%.This work has successfully prepared PLA/PBAT composite films with simultaneously improved oxygen barrier property and degradation behavior,which has great potential for high-demanding green chemistry packaging industries,including food,agricultural,and military packaging.展开更多
The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extract...The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then...Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).展开更多
This study examines the potential impacts o climate change on Lake Biwa,Japan’s largest freshwate lake,with a focus on temperature,wind speed,and pre cipitation variations.Leveraging data from the IPCC Sixth Assessme...This study examines the potential impacts o climate change on Lake Biwa,Japan’s largest freshwate lake,with a focus on temperature,wind speed,and pre cipitation variations.Leveraging data from the IPCC Sixth Assessment Report,including CCP scenarios,projecting a significant temperature rise of 3.3–5.7℃in the case o very high GHG emission power,the research investigates how these shifts may influence dissolved oxygen levels in Lake Biwa.Through a one-dimensional model incorporat ing sediment redox reactions,various scenarios where ai temperature and wind speed are changed are simulated.I is revealed that a 5℃increase in air temperature leads to decreasing 1-2 mg/L of dissolved oxygen concentrations from the surface layer to the bottom layer,while a decrease in air temperature tends to elevate 1–3 mg/L of oxygen lev els.Moreover,doubling wind speed enhances surface laye oxygen but diminishes it in deeper layers due to increased mixing.Seasonal variations in wind effects are noted with significant surface layer oxygen increases from 0.4to 0.8 mg/L during summer to autumn,increases from 0.4 to 0.8 mg/L in autumn to winter due to intensified vertica mixing.This phenomenon impacts the lake’s oxygen cycle year-round.In contrast,precipitation changes show limited impact on oxygen levels,suggesting minor influence com pared to other meteorological factors.The study suggests the necessity of comprehensive three-dimensional models that account for lake-specific and geographical factors fo accurate predictions of future water conditions.A holistic approach integrating nutrient levels,water temperature,and river inflow is deemed essential for sustainable management of Lake Biwa’s water resources,particularly in addressing precipitation variations.展开更多
BACKGROUND:Soft tissue damage induced by cobalt nanoparticles is currently the most noticeable complication in patients with artificial joint prostheses.Therefore,an effective therapeutic strategy is needed to limit t...BACKGROUND:Soft tissue damage induced by cobalt nanoparticles is currently the most noticeable complication in patients with artificial joint prostheses.Therefore,an effective therapeutic strategy is needed to limit the toxicity of cobalt nanoparticles.OBJECTIVE:To investigate the protective effect of a ferroptosis inhibitor on cobalt nanoparticles-induced cytotoxicity.METHODS:To evaluate the detoxification effect of ferroptosis inhibitor on mouse fibroblasts(Balb/3T3),Balb/3T3 cells were treated with cobalt nanoparticles and ferroptosis inhibitor for 24 hours.The cell viabilities were measured by cell viability assay.Based on the results of the cell viability assay,the concentrations of cobalt nanoparticles and deferiprone were determined.The experiment was divided into four groups:the cobalt nanoparticles group(400μmol/L cobalt nanoparticles),the cobalt nanoparticles+deferiprone group(400μmol/L cobalt nanoparticles and 25μmol/L deferiprone),the deferiprone group(25μmol/L deferiprone),and the control group.The expressions of glutathione peroxidase 4 and solute carrier family 7 member 11 protein were examined by western blot assay.RESULTS AND CONCLUSION:(1)The cell viability assay results showed that as the exposure time or the drug concentration increased,cell viability decreased further,indicating that the cytotoxic effect of cobalt nanoparticles was time-and dose-dependent.Additionally,after 24 hours of exposure,cobalt nanoparticles significantly reduced cell viability and glutathione levels compared with the control group(P<0.05).At the same time,compared with the control group,there was an increase in reactive oxygen species production,intracellular iron levels,and the expression of inflammatory cytokines such as tumor necrosis factorα,interleukin-1β,and interleukin-6.After the addition of deferiprone,compared with the cobalt nanoparticles group,cell viability significantly improved,and reactive oxygen species production,intracellular iron levels,and the expression of inflammatory cytokines(tumor necrosis factorα,interleukin-1β,and interleukin-6)significantly decreased(P<0.05).This demonstrated that deferiprone had a protective effect on cells exposed to cobalt nanoparticles.(2)Western blot assay results showed that cobalt nanoparticles reduced the expression of glutathione peroxidase 4 and solute carrier family 7 member 11 protein(P<0.05),while deferiprone inhibited this effect(P<0.05).(3)The above findings verify that cobalt nanoparticles are highly cytotoxic and ferroptosis inhibitor deferiprone has a detoxification effect on cytotoxicity induced by cobalt nanoparticles.Ferroptosis plays an important role in the process by which cobalt nanoparticles induce cytotoxicity.The inhibitory effect of ferroptosis inhibitors on the toxicity of cobalt nanoparticles may provide valuable insights for further research into the mechanisms of cobalt nanoparticle toxicity and potential detoxification strategies.展开更多
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c...The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.展开更多
基金support from National Natural Science Foundation of China(Grant Nos.22125903,22209174)the National Key R&D Program of China(Grants 2022YFA1504100)+2 种基金Dalian Innovation Support Plan for High Level Talents(2019RT09)Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL202016,DNL202019)DICP(DICP I2020032).
文摘Electricity-driven water splitting to produce hydrogen is one of the most efficient ways to alleviate energy crisis and environmental pollution problems,in which the anodic oxygen evolution reaction(OER)is the key half-reaction of performance-limiting in water splitting.Given the complicated reaction process and surface reconstruction of the involved catalysts under actual working conditions,unraveling the real active sites,probing multiple reaction intermediates and clarifying catalytic pathways through in-situ characterization techniques and theoretical calculations are essential.In this review,we summarize the recent advancements in understanding the catalytic process,unlocking the water oxidation active phase and elucidating catalytic mechanism of water oxidation by various in-situ characterization techniques.Firstly,we introduce conventionally proposed traditional catalytic mechanisms and novel evolutionary mechanisms of OER,and highlight the significance of optimal catalytic pathways and intrinsic stability.Next,we provide a comprehensive overview of the fundamental working principles,different detection modes,applicable scenarios,and limitations associated with the in-situ characterization techniques.Further,we exemplified the in-situ studies and discussed phase transition detection,visualization of speciation evolution,electronic structure tracking,observation of reaction active intermediates,and monitoring of catalytic products,as well as establishing catalytic structure-activity relationships and catalytic mechanism.Finally,the key challenges and future perspectives for demystifying the water oxidation process are briefly proposed.
基金supported by the National Natural Sci-ence Foundation of China(22272081),Jiangsu Provincial Specially Appointed Professors Foundation.
文摘Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy to produce an efficient OER catalyst that can boost industrial-scale water splitting.Molecular-level phosphate(-PO_(4))group is introduced to modify the surface of PrBa_(0.5)Ca_(0.5)Co_(2)O_(5)+δ(PBCC).The achieved catalyst(PO_(4)-PBCC)exhibits significantly enhanced catalytic performance in alkaline media.Based on the X-ray absorption spectroscopy results and density functional theory(DFT)calculations,the PO_(4)on the surface,which is regarded as the Lewis base,is the key factor to overcome the kinetic limitation of the proton transfer process during the OER.The use of the catalyst in a membrane electrode assembly(MEA)is further evaluated for industrial-scale water splitting,and it only needs a low voltage of 1.66 V to achieve a large current density of 1 A cm^(-2).This work provides a new molecular-level strategy to develop highly efficient OER electrocatalysts for industrial applications.
基金the support of the research computing department of Khalifa Universityfinancially supported by the National Natural Science Foundation of China(Grant No.22033005)+1 种基金the National Key R&D Project(Grant Nos.2022YFA1503900 and 2022YFA1503000)the Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002)
文摘Single-atom catalysts(SACs)have received significant interest for optimizing metal atom utilization and superior catalytic performance in hydrogen evolution reaction(HER),oxygen evolution reaction(OER),and oxygen reduction reaction(ORR).In this study,we investigate a range of single-transition metal(STM_(1)=Sc_(1),Ti_(1),V_(1),Cr_(1),Mn_(1),Fe_(1),Co_(1),Ni_(1),Cu_(1),Zr_(1),Nb_(1),Mo_(1),Ru_(1),Rh_(1),Pd_(1),Ag_(1),W_(1),Re_(1),Os_(1),Ir_(1),Pt_(1),and Au_(1))atoms supported on graphyne(GY)surface for HER/OER and ORR using first-principle calculations.Ab initio molecular dynamics(AIMD)simulations and phonon dispersion spectra reveal the dynamic and thermal stabilities of the GY surface.The exceptional stability of all supported STM_(1)atoms within the H1 cavity of the GY surface exists in an isolated form,facilitating the uniform distribution and proper arrangement of single atoms on GY.In particular,Sc_(1),Co_(1),Fe_(1),and Au_(1)/GY demonstrate promising catalytic efficiency in the HER due to idealisticΔG_(H^(*))values via the Volmer-Heyrovsky pathway.Notably,Sc_(1)and Au_(1)/GY exhibit superior HER catalytic activity compared to other studied catalysts.Co_(1)/GY catalyst exhibits higher selectivity and activity for the OER,with an overpotential(0.46 V)comparable to MoC_(2),IrO_(2),and RuO_(2).Also,Rh_(1)and Co_(1)/GY SACs exhibited promising electrocatalysts for the ORR,with an overpotential of 0.36 and0.46 V,respectively.Therefore,Co_(1)/GY is a versatile electrocatalyst for metal-air batteries and water-splitting.This study further incorporates computational analysis of the kinetic potential energy barriers of Co_(1)and Rh_(1)in the OER and ORR.A strong correlation is found between the estimated kinetic activation barriers for the thermodynamic outcomes and all proton-coupled electron transfer steps.We establish a relation for the Gibbs free energy of intermediates to understand the mechanism of SACs supported on STM,/GY and introduce a key descriptor.This study highlights GY as a favorable single-atom support for designing highly active and cost-effective versatile electrocatalysts for practical applications.
基金funding support from National Natural Science Foundation of China(Project No.61574091)Wuxi River and Lake Management and Water Resources Management Center(Project No.JSXXCG2022-004).
文摘The structure of liquid water is primarily composed of three-dimensional networks of water clusters formed by hydrogen bonds,and dis-solved oxygen is one of the most important indicators for assessing water qual-ity.In this work,distilled water with different concentration of dissolved oxygen were prepared,and a clear negative correlation between the size of water clus-ters and dissolved oxygen concentration was observed.Besides,a phenomenon of rapid absorption and release of oxygen at the water interfaces was unveiled,suggesting that oxygen molecules predominantly exist at the interfaces of water clusters.Oxygen molecules can move rapidly through the interfaces among water clusters,allowing dissolved oxygen to quickly reach a saturation level at certain partial pressure of oxygen and temperature.Further exploration into the mechanism by molecular dynamics simulations of oxygen and water clusters found that oxygen molecules can only exist stably at the interfaces among water clusters.A semi-empirical formula relating the average number of water molecules in a cluster(n)to ^(17)O NMR half-peak width(W)was summarized:n=0.1 W+0.85.These findings provide a foundation for exploring the structure and properties of water.
基金supported by the Fundamental Research Funds for the Central Universities,South-Central Minzu University,China(Grant No.CZY23002)Hubei Province Natural Science Foundation of China(Grant No.2019CFB804).
文摘A rice cyclase gene,OsCYL4b,identified as an alternative splice variant of the cyclase gene OsCYL4a,is involved in the regulation of drought stress and oxidative response.Compared with OsCYL4a,OsCYL4b lacks the second exon,which is located in the conserved motif 3,and may be a functionally important site.Our results suggested that OsCYL4b was responsive to multiple abiotic stresses,and was localized to both the cytoplasm and plasma membrane.The overexpression of OsCYL4b resulted in significantly enhanced drought and osmotic stress tolerance,reduced water loss,and increased abscisic acid(ABA)content compared with the wild type(WT).
基金supported by the financial support of the Guangxi Science and Technology Major Projects(Guike AA23023033)。
文摘Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge.Here,an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO_(4)/Co_(3)O_(4)@CC)in a favorable direction to improve the OER performance.Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching,with the formation of a dynamically stable amorphous-crystalline heterostructure.Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co_(3)O_(4) are crucial in enhancing the catalytic performance.Consequently,the reconstructed CoMoO_(4)/Co_(3)O_(4)@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm^(-2) in 1 M KOH,and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices,achieving ultra-long stability for over 500 and 1200 h,respectively.This work provides a promising route for the construction of high-performance electrocatalysts.
基金supported by the Starting Foundation of ShanghaiTech Universitythe Double First-Class Initiative Fund of ShanghaiTech Universitythe National Natural Science Foundation of China (21972092)
文摘Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON nanoparticles are synthesized via heating a vacuum-sealed mixture of KTaO_(3),Ta and NH_(4)Cl.This method possesses multiple advantages in terms of lower calcination parameter,higher N conversion efficiency and superior photocatalytic activity in comparison with the traditional thermal ammonolysis using NH_(3) gas as a nitrogen source.Through the analysis of intermediates produced upon the elevation of heating temperature,a gas-solid-phase reaction between TaCl_(5) and Ta_(2)O_(5) is demonstrated as the final step,which is conducive to decreasing thermal energy barrier and accelerating nitridation process.Precise control of preparation conditions,including calcination temperature and duration,allows for the regulation of surface O/N ratio of TaON particles to unity,resulting in optimized photocat-alytic activity.Photoelectrochemical assessment and intensity modulated photocurrent spectroscopy provide convincing evidence for improved charge transfer effciency of photoexcited holes at TaON surface.A Z-scheme overall water splitting is accomplished by employing the TaON as an effective oxygen evolution photocatalyst,SrTiO_(3):Rh as a hydrogen evolution photocatalyst,and reduced graphene oxide(rGO)as a solid-state electron mediator.This work presents a promising strategy for the synthesis of high-quality oxynitride materials in application to photocatalytic water splitting.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
基金Supported by National Natural Science Foundation of China,No.82374449China Postdoctoral Science Foundation,No.2023M731782+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent,No.2022ZB806Jiangsu Province Postgraduate Scientific Research and Innovation Plan,No.KYCX23_2136.
文摘BACKGROUND Constipation,a highly prevalent functional gastrointestinal disorder,induces a significant burden on the quality of patients'life and is associated with substantial healthcare expenditures.Therefore,identifying efficient therapeutic modalities for constipation is of paramount importance.Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms.Consequently,we postulate that hydrogen therapy,an emerging and promising intervention,can serve as a safe and efficacious treatment for constipation.AIM To determine whether hydrogen-rich water(HRW)alleviates constipation and its potential mechanism.METHODS Constipation models were established by orally loperamide to Sprague-Dawley rats.Rats freely consumed HRW,and were recorded their 24 h total stool weight,fecal water content,and charcoal propulsion rate.Fecal samples were subjected to 16S rDNA gene sequencing.Serum non-targeted metabolomic analysis,malondialdehyde,and superoxide dismutase levels were determined.Colonic tissues were stained with hematoxylin and eosin,Alcian blue-periodic acid-Schiff,reactive oxygen species(ROS)immunofluorescence,and immunohistochemistry for cell growth factor receptor kit(c-kit),PGP 9.5,sirtuin1(SIRT1),nuclear factor-erythroid-2-related factor 2(Nrf2),and heme oxygenase-1(HO-1).Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1,Nrf2 and HO-1.A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor,EX527,into constipated rats.NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression.RESULTS HRW alleviated constipation symptoms by improving the total amount of stool over 24 h,fecal water content,charcoal propulsion rate,thickness of the intestinal mucus layer,c-kit expression,and the number of intestinal neurons.HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism.HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway.This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats.The serum metabolites,β-leucine(β-Leu)and traumatic acid,were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1.CONCLUSION HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway,modulating gut microbiota and serum metabolites.β-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.
基金the financial support of the National Natural Science Foundation of China(52162027,52274297 and 52164028)the Hainan Province Science and Technology Special Fund(ZDYF2023SHFZ091)+4 种基金the Hainan Provincial Natural Science Foundation of China(project Nos.221RC540)Hainan Provincial Postdoctoral Science Foundation(project Nos.2022-BH-25)the Collaborative Innovation Center of Marine Science and Technology(Hainan University)the Start-up Research Foundation of Hainan University(KYQD(ZR)2008,23069,23073 and 23067)the specific research fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202315)。
文摘High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstructured catalyst is constructed by depositing NiFe-layered double hydroxides(NiFe-LDH)on the substrate of MXene(V_(2)CT_(x))modified Ni foam(NF),and abbreviated as NiFe-LDH/V_(2)CT_(x)/NF.As demonstrated,owing to the intrinsic negative charge characteristic of V_(2)CT_(x),chlorine ions are denied entry to the interface between NiFeLDH and V_(2)CT_(x)/NF substrate,thus endowing NiFe-LDH/V_(2)CT_(x)/NF catalyst with high corrosion resistance and durable stability for 110 h at 500 mA cm^(-2).Meanwhile,the two-dimensional structure and high electrical conductivity of V_(2)CT_(x) can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer,thereby synergistically promoting the catalytic performance of NiFe-LDH/V_(2)CT_(x)/NF in both deionized water electrolyte(261 m V at 100 m A cm^(-2))and simulated seawater electrolyte(241 mV at 100 mA cm^(-2)).This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.
基金This work was funded by the Science and Technology Program of Gansu Province(23ZDFA017,22ZD6FA005)the Third Xinjiang Scientific Expedition Program(2022xjkk0802).
文摘Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater,and reservoir water in the Burqin River Basin of the Altay Mountains,China in 2021,and characterized the oxygen and hydrogen isotope variations in different water bodies via instrumental analytics and modeling.Results showed significant seasonal variations in stable isotope ratios of oxygen and hydrogen(δ18O andδ2H,respectively)and significant differences inδ18O andδ2H among different water bodies.Higherδ18O andδ2H values were mainly found in river water,while groundwater and reservoir water had lower isotope ratios.River water and groundwater showed differentδ18O-δ2H relationships with the local meteoric water line,implying that river water and groundwater are controlled by evaporative enrichment and multi-source recharge processes.The evaporative enrichment experienced by reservoir water was less significant and largely influenced by topography,recharge sources,local moisture cycling,and anthropogenic factors.Higher deuterium excess(d-excess)value of 14.34‰for river water probably represented the isotopic signature of combined contributions from direct precipitation,snow and glacial meltwater,and groundwater recharge.The average annual d-excess values of groundwater(10.60‰)and reservoir water(11.49‰)were similar to the value of global precipitation(10.00‰).The findings contribute to understanding the hydroclimatic information reflected in the month-by-month variations in stable isotopes in different water bodies and provide a reference for the study of hydrological processes and climate change in the Altay Mountains,China.
基金funded by the National Key R&D Program of China(2021YFA1501101)the National Natural Science Foundation of China(No.22471103,22425105,22201111,21931001,22221001,and 22271124)+5 种基金Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Special Fund Project of Guiding Scientific and Technological Innovation Development of Gansu Province(2019ZX-04)the 111 Project(B20027)as well as the National Natural Science Foundation of Gansu Province(22JR5RA470)the Fundamental Research Funds for the Central Universities(lzujbky-2023-eyt03)supported by the Agency for Science,Technology and Research(A*STAR)MTC Individual Research Grants(IRG)M22K2c0078.
文摘Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has been often correlated with the activity enhancement.Here,a systematic study on the roles of Fe substitution in activation of perovskite LaNiO_(3)is reported.The substituting Fe content influences both current change tendency and surface reconstruction degree.LaNi_(0.9)Fe_(0.1)O_(3)is found exhibiting a volcano-peak intrinsic activity in both pristine and reconstructed among all substituted perovskites in the LaNi_(1-x)Fe_(x)O_(3)(x=0.00,0.10,0.25,0.50,0.75,1.00)series.The reconstructed LaNi_(0.9)Fe_(0.1)O_(3)shows a higher intrinsic activity than most reported NiFe-based catalysts.Besides,density functional theory calculations reveal that Fe substitution can lower the O 2p level,which thus stabilize lattice oxygen in LaNi0.9Fe0.1O3 and ensure its long-term stability.Furthermore,it is vital interesting that activity of the reconstructed catalysts relied more on the surface chemistry rather than the reconstruction degree.The effect of Fe on the degree of surface reconstruction of the perovskite is decoupled from that on its activity enhancement after surface reconstruction.This finding showcases the importance to customize the surface chemistry of reconstructed catalysts for water oxidation.
基金Research Institute for Smart Energy(CDB2)the grant from the Research Institute for Advanced Manufacturing(CD8Z)+4 种基金the grant from the Carbon Neutrality Funding Scheme(WZ2R)at The Hong Kong Polytechnic Universitysupport from the Hong Kong Polytechnic University(CD9B,CDBZ and WZ4Q)the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Start-up Foundation for Introducing Talent of NUIST and Natural Science Foundation of Jiangsu Province of China(BK20230426).
文摘Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
基金financial support of this work by the National Natural Science Foundation of China(Nos.22378332,52003219)the Open Fund of Zhejiang Key Laboratory of Flexible Electronics(No.2022FE008)+1 种基金the Natural Science Foundation of Ningbo(NO.2022J058)Ministry of Industry and Information Technology high quality development project(TC220A04A-206).
文摘Although poly(lactic acid)(PLA)is a good environmentally-friendly bio-degradable polymer which is used to substitute traditional petrochemical-based polymer packaging films,the barrier properties of PLA films are still insufficient for high-barrier packaging applications.In this study,oxygen scavenger hydroxyl-terminated polybutadiene(HTPB)and cobalt salt catalyst were incorporated into the PLA/poly(butylene adipate-co-terephthalate)(PLA/PBAT),followed by melting extrusion and three-layer co-extrusion blown film process to prepare the composite films.The oxygen permeability coefficient of the composite film combined with 6 wt%oxygen scavenger and 0.4 wt%catalyst was decreased significantly from 377.00 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1) to 0.98 cc·mil·m^(-2)·day^(-1)·0.1 MPa^(-1),showing a remarkable enhancement of 384.69 times compared with the PLA/PBAT composite film.Meanwhile,the degradation behavior of the composite film was also accelerated,exhibiting a mass loss of nearly 60%of the original mass after seven days of degradation in an alkaline environment,whereas PLA/PBAT composite film only showed a mass loss of 32%.This work has successfully prepared PLA/PBAT composite films with simultaneously improved oxygen barrier property and degradation behavior,which has great potential for high-demanding green chemistry packaging industries,including food,agricultural,and military packaging.
基金financially supported by the National Natural Science Foundation of China(Nos.52404328,52274412,and 52374418)the China Postdoctoral Science Foundation(No.2024M753248)。
文摘The rich resources and unique environment of the Moon make it an ideal location for human expansion and the utilization of extraterrestrial resources.Oxygen,crucial for supporting human life on the Moon,can be extracted from lunar regolith,which is highly rich in oxygen and contains polymetallic oxides.This oxygen and metal extraction can be achieved using existing metallurgical techniques.Furthermore,the ample reserves of water ice on the Moon offer another means for oxygen production.This paper offers a detailed overview of the leading technologies for achieving oxygen production on the Moon,drawing from an analysis of lunar resources and environmental conditions.It delves into the principles,processes,advantages,and drawbacks of water-ice electrolysis,two-step oxygen production from lunar regolith,and one-step oxygen production from lunar regolith.The two-step methods involve hydrogen reduction,carbothermal reduction,and hydrometallurgy,while the one-step methods encompass fluorination/chlorination,high-temperature decomposition,molten salt electrolysis,and molten regolith electrolysis(MOE).Following a thorough comparison of raw materials,equipment,technology,and economic viability,MOE is identified as the most promising approach for future in-situ oxygen production on the Moon.Considering the corrosion characteristics of molten lunar regolith at high temperatures,along with the Moon's low-gravity environment,the development of inexpensive and stable inert anodes and electrolysis devices that can easily collect oxygen is critical for promoting MOE technology on the Moon.This review significantly contributes to our understanding of in-situ oxygen production technologies on the Moon and supports upcoming lunar exploration initiatives.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
文摘Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).
基金Open Access funding provided by Kobe UniversityThis research was partially performed by the Environment Research and Technology Development Fund(2RL-2301)of the Environmental Restoration and Conservation Agency provided by Ministry of the Environment of Japan.
文摘This study examines the potential impacts o climate change on Lake Biwa,Japan’s largest freshwate lake,with a focus on temperature,wind speed,and pre cipitation variations.Leveraging data from the IPCC Sixth Assessment Report,including CCP scenarios,projecting a significant temperature rise of 3.3–5.7℃in the case o very high GHG emission power,the research investigates how these shifts may influence dissolved oxygen levels in Lake Biwa.Through a one-dimensional model incorporat ing sediment redox reactions,various scenarios where ai temperature and wind speed are changed are simulated.I is revealed that a 5℃increase in air temperature leads to decreasing 1-2 mg/L of dissolved oxygen concentrations from the surface layer to the bottom layer,while a decrease in air temperature tends to elevate 1–3 mg/L of oxygen lev els.Moreover,doubling wind speed enhances surface laye oxygen but diminishes it in deeper layers due to increased mixing.Seasonal variations in wind effects are noted with significant surface layer oxygen increases from 0.4to 0.8 mg/L during summer to autumn,increases from 0.4 to 0.8 mg/L in autumn to winter due to intensified vertica mixing.This phenomenon impacts the lake’s oxygen cycle year-round.In contrast,precipitation changes show limited impact on oxygen levels,suggesting minor influence com pared to other meteorological factors.The study suggests the necessity of comprehensive three-dimensional models that account for lake-specific and geographical factors fo accurate predictions of future water conditions.A holistic approach integrating nutrient levels,water temperature,and river inflow is deemed essential for sustainable management of Lake Biwa’s water resources,particularly in addressing precipitation variations.
文摘BACKGROUND:Soft tissue damage induced by cobalt nanoparticles is currently the most noticeable complication in patients with artificial joint prostheses.Therefore,an effective therapeutic strategy is needed to limit the toxicity of cobalt nanoparticles.OBJECTIVE:To investigate the protective effect of a ferroptosis inhibitor on cobalt nanoparticles-induced cytotoxicity.METHODS:To evaluate the detoxification effect of ferroptosis inhibitor on mouse fibroblasts(Balb/3T3),Balb/3T3 cells were treated with cobalt nanoparticles and ferroptosis inhibitor for 24 hours.The cell viabilities were measured by cell viability assay.Based on the results of the cell viability assay,the concentrations of cobalt nanoparticles and deferiprone were determined.The experiment was divided into four groups:the cobalt nanoparticles group(400μmol/L cobalt nanoparticles),the cobalt nanoparticles+deferiprone group(400μmol/L cobalt nanoparticles and 25μmol/L deferiprone),the deferiprone group(25μmol/L deferiprone),and the control group.The expressions of glutathione peroxidase 4 and solute carrier family 7 member 11 protein were examined by western blot assay.RESULTS AND CONCLUSION:(1)The cell viability assay results showed that as the exposure time or the drug concentration increased,cell viability decreased further,indicating that the cytotoxic effect of cobalt nanoparticles was time-and dose-dependent.Additionally,after 24 hours of exposure,cobalt nanoparticles significantly reduced cell viability and glutathione levels compared with the control group(P<0.05).At the same time,compared with the control group,there was an increase in reactive oxygen species production,intracellular iron levels,and the expression of inflammatory cytokines such as tumor necrosis factorα,interleukin-1β,and interleukin-6.After the addition of deferiprone,compared with the cobalt nanoparticles group,cell viability significantly improved,and reactive oxygen species production,intracellular iron levels,and the expression of inflammatory cytokines(tumor necrosis factorα,interleukin-1β,and interleukin-6)significantly decreased(P<0.05).This demonstrated that deferiprone had a protective effect on cells exposed to cobalt nanoparticles.(2)Western blot assay results showed that cobalt nanoparticles reduced the expression of glutathione peroxidase 4 and solute carrier family 7 member 11 protein(P<0.05),while deferiprone inhibited this effect(P<0.05).(3)The above findings verify that cobalt nanoparticles are highly cytotoxic and ferroptosis inhibitor deferiprone has a detoxification effect on cytotoxicity induced by cobalt nanoparticles.Ferroptosis plays an important role in the process by which cobalt nanoparticles induce cytotoxicity.The inhibitory effect of ferroptosis inhibitors on the toxicity of cobalt nanoparticles may provide valuable insights for further research into the mechanisms of cobalt nanoparticle toxicity and potential detoxification strategies.
基金supported by Shanxi Province Science Foundation for Youths(202203021212300)Taiyuan University of Science and Technology Scientific Research Initial Funding(20212064)Outstanding Doctoral Award Fund in Shanxi Province(20222060).
文摘The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.