Traditional fluid production profile logging is not usually suitable for heavy-viscous crude oil wells.Biodegradation of heavy oil can lead to the loss of n-alkanes,and the use of chromatogram fingerprint techniques i...Traditional fluid production profile logging is not usually suitable for heavy-viscous crude oil wells.Biodegradation of heavy oil can lead to the loss of n-alkanes,and the use of chromatogram fingerprint techniques in studying the production contributions of single layers in heavy oil commingled wells has limitations.However,aromatic compounds are relatively well preserved.We took the heavy oil commingled wells of small layers NG55 and NG61 in the ninth area of the Gudong oil field as examples.Based on the principle of chromatography,the whole-oil GC-MS was used,and the aromatic parameters which have a strongly linear relationship with the ratio of mixed two end member oils were verified and selected in laboratory.Studies showed that the ratio of (1,4,6-+ 2,3,6-trimethylnaphthalene) to 1,2,5-trimethylnaphthalene has a strongly linear relationship with the ratio of the mixed two end member oils (R2=0.992).The oil contributions from single layers NG55 and NG61 in six commingled heavy oil wells were calculated using established charts and this relationship.The calculated results are consistent with the results of long period dynamic monitoring and logging interpretation in the study area and can provide a scientific basis for monitoring production performance and hierarchical management of reservoirs.The study provides a new geochemical method for calculation of the contributions of single layers in heavy oil commingled wells when conventional fluid production profile logging is not suitable.展开更多
Based on the established mathematic model and graphic interpretation, a new method, which is used to calculate the contribution of single-zone production in a commingled producing well by the ultraviolet spectrum tech...Based on the established mathematic model and graphic interpretation, a new method, which is used to calculate the contribution of single-zone production in a commingled producing well by the ultraviolet spectrum technique, has been established. The standard plate was drawn using the extinction coefficient E of sample oils formulated artificially as y-axis and the wavelength as x-axis. The curve resulting from the UV analysis of sample oils in the commingled well was inserted into the standard plate and compared. The proportion of each single zone in the commingled producing well was identical with the proportion of the curve which is closest to the curve of sample oils formulated artificially. In the well QHD32-6-3 field, taking well A22 for example and using this method, the production contribution of a single zone was calculated. The result showed that the Nm4 zone is a major "contributor", the proportion of the Nm4 zone is 70%, and that of the Nm1 zone is 30%. The ultraviolet spectrum technique provided a new reservoir geochemical technique of monitoring production contribution, especially for biodegraded heavy oil, but it has some limitation, just depending on the GC fingerprint technique.展开更多
To seek effective ways of lowering development cost and tapping inter-well remaining reserves, sidetracking horizontal wells from old wells in Su10 and Su53 Block were conducted. The engineering and geological problem...To seek effective ways of lowering development cost and tapping inter-well remaining reserves, sidetracking horizontal wells from old wells in Su10 and Su53 Block were conducted. The engineering and geological problems such as leakage, collapse and sticking in slim-hole sidetracking, and difficult evaluation of remaining gas were gradually overcome, and a set of drilling and completion technology, well deployment optimization technology and geo-steering technology suitable for sidetracking horizontal wells in tight sandstone gas reservoirs have been worked out. By making full use of the old well, sidetracking horizontal wells can greatly reduce development costs, enhance the producing degree of inter-well remaining reserves, and get production 3-5 times of that of adjacent vertical wells.Its production effect is influenced by encountered sandstone length, the position of the horizontal segment in the reservoir, produced effective reservoir thickness, gas saturation, controlled reserves and fracturing effect, etc. Up to now, in Block Su10 and Su53, 12 sidetracking horizontal wells have been drilled, which have an average drilling cycle of 49 days, average horizontal section length of 689 m,average effective drilling ratio of 61.5%, average well-head pressure of 16.2 MPa, and daily output of 4.7×10~4 m^3 at the initial stage after production. By the end of 2017, the average yield increment was more than 1 000×10~4 m^3 with good effect. With the increase of low yield old wells, wells in the enrichment regions tend to be saturated and the rest gas-bearing areas are lower in grade, therefore, sidetracking horizontal well can be used for optimization of well pattern, well deployment mode and exploitation of remaining oil areas.展开更多
Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production w...Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait.展开更多
Most oil and gas wells worldwide are completed with low alloy carbon steel due to cost-effectiveness, despite its high susceptibility to corrosion. Corrosion in alloy steels occurs through galvanic or electrolytic rea...Most oil and gas wells worldwide are completed with low alloy carbon steel due to cost-effectiveness, despite its high susceptibility to corrosion. Corrosion in alloy steels occurs through galvanic or electrolytic reactions, resulting in the release of metallic ions. This release adversely affects the strength and integrity of production tubing. The current study focused on quantifying the amount of alloying constituents present in the produced waters of oil and gas wells using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to calculate the corrosion rate on the production tubing. Two types of alloy steel tubing, API 5CT T-95 and API 5CT J55, were selected. The wells were chosen based on sweet and sour production. The levels of ions present in the produced water—Nickel, Chromium, Manganese, Molybdenum, and Iron—were measured. Ion dissolution was converted to corrosion rate using the exposed area of the tubing and the water flow rate. The study concluded that a very high corrosion rate occurs in sweet wells completed with T-95 metallurgy, whereas the corrosion rate in sour gas producers is significantly less compared to sweet producers. For the oil wells, although they are sour producers, a very low corrosion rate was observed with API 5CT J55 metallurgy. Furthermore, the study revealed that quantifying the alloying constituents in produced water is key to developing suitable corrosion projection approaches, predicting the service life of production tubing in gas and oil wells and metallic structures, and guiding production engineers to make informed decisions and timely responses to corrosion threats before failure.展开更多
基金supported by the Gudong Oil Production Plant of Shengli Oilfield Subsidiary Company,China Postdoctoral Science Foundation(Project 2013M530681)Hubei Province Natural Science Foundation(Project 2013CFB394)
文摘Traditional fluid production profile logging is not usually suitable for heavy-viscous crude oil wells.Biodegradation of heavy oil can lead to the loss of n-alkanes,and the use of chromatogram fingerprint techniques in studying the production contributions of single layers in heavy oil commingled wells has limitations.However,aromatic compounds are relatively well preserved.We took the heavy oil commingled wells of small layers NG55 and NG61 in the ninth area of the Gudong oil field as examples.Based on the principle of chromatography,the whole-oil GC-MS was used,and the aromatic parameters which have a strongly linear relationship with the ratio of mixed two end member oils were verified and selected in laboratory.Studies showed that the ratio of (1,4,6-+ 2,3,6-trimethylnaphthalene) to 1,2,5-trimethylnaphthalene has a strongly linear relationship with the ratio of the mixed two end member oils (R2=0.992).The oil contributions from single layers NG55 and NG61 in six commingled heavy oil wells were calculated using established charts and this relationship.The calculated results are consistent with the results of long period dynamic monitoring and logging interpretation in the study area and can provide a scientific basis for monitoring production performance and hierarchical management of reservoirs.The study provides a new geochemical method for calculation of the contributions of single layers in heavy oil commingled wells when conventional fluid production profile logging is not suitable.
文摘Based on the established mathematic model and graphic interpretation, a new method, which is used to calculate the contribution of single-zone production in a commingled producing well by the ultraviolet spectrum technique, has been established. The standard plate was drawn using the extinction coefficient E of sample oils formulated artificially as y-axis and the wavelength as x-axis. The curve resulting from the UV analysis of sample oils in the commingled well was inserted into the standard plate and compared. The proportion of each single zone in the commingled producing well was identical with the proportion of the curve which is closest to the curve of sample oils formulated artificially. In the well QHD32-6-3 field, taking well A22 for example and using this method, the production contribution of a single zone was calculated. The result showed that the Nm4 zone is a major "contributor", the proportion of the Nm4 zone is 70%, and that of the Nm1 zone is 30%. The ultraviolet spectrum technique provided a new reservoir geochemical technique of monitoring production contribution, especially for biodegraded heavy oil, but it has some limitation, just depending on the GC fingerprint technique.
基金Supported by the Project of Great Wall Drilling Company in CNPC(2015A25-2(2012))
文摘To seek effective ways of lowering development cost and tapping inter-well remaining reserves, sidetracking horizontal wells from old wells in Su10 and Su53 Block were conducted. The engineering and geological problems such as leakage, collapse and sticking in slim-hole sidetracking, and difficult evaluation of remaining gas were gradually overcome, and a set of drilling and completion technology, well deployment optimization technology and geo-steering technology suitable for sidetracking horizontal wells in tight sandstone gas reservoirs have been worked out. By making full use of the old well, sidetracking horizontal wells can greatly reduce development costs, enhance the producing degree of inter-well remaining reserves, and get production 3-5 times of that of adjacent vertical wells.Its production effect is influenced by encountered sandstone length, the position of the horizontal segment in the reservoir, produced effective reservoir thickness, gas saturation, controlled reserves and fracturing effect, etc. Up to now, in Block Su10 and Su53, 12 sidetracking horizontal wells have been drilled, which have an average drilling cycle of 49 days, average horizontal section length of 689 m,average effective drilling ratio of 61.5%, average well-head pressure of 16.2 MPa, and daily output of 4.7×10~4 m^3 at the initial stage after production. By the end of 2017, the average yield increment was more than 1 000×10~4 m^3 with good effect. With the increase of low yield old wells, wells in the enrichment regions tend to be saturated and the rest gas-bearing areas are lower in grade, therefore, sidetracking horizontal well can be used for optimization of well pattern, well deployment mode and exploitation of remaining oil areas.
文摘Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait.
文摘Most oil and gas wells worldwide are completed with low alloy carbon steel due to cost-effectiveness, despite its high susceptibility to corrosion. Corrosion in alloy steels occurs through galvanic or electrolytic reactions, resulting in the release of metallic ions. This release adversely affects the strength and integrity of production tubing. The current study focused on quantifying the amount of alloying constituents present in the produced waters of oil and gas wells using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to calculate the corrosion rate on the production tubing. Two types of alloy steel tubing, API 5CT T-95 and API 5CT J55, were selected. The wells were chosen based on sweet and sour production. The levels of ions present in the produced water—Nickel, Chromium, Manganese, Molybdenum, and Iron—were measured. Ion dissolution was converted to corrosion rate using the exposed area of the tubing and the water flow rate. The study concluded that a very high corrosion rate occurs in sweet wells completed with T-95 metallurgy, whereas the corrosion rate in sour gas producers is significantly less compared to sweet producers. For the oil wells, although they are sour producers, a very low corrosion rate was observed with API 5CT J55 metallurgy. Furthermore, the study revealed that quantifying the alloying constituents in produced water is key to developing suitable corrosion projection approaches, predicting the service life of production tubing in gas and oil wells and metallic structures, and guiding production engineers to make informed decisions and timely responses to corrosion threats before failure.