Compacted bentonite-sand(B/S)mixtures have been used as a barrier material in engineered barrier systems(EBSs)of deep geological repositories(DGR)to store nuclear wastes.This study investigates the individual and comb...Compacted bentonite-sand(B/S)mixtures have been used as a barrier material in engineered barrier systems(EBSs)of deep geological repositories(DGR)to store nuclear wastes.This study investigates the individual and combined effects of different chemical compositions of deep groundwaters(chemical factor)at potential repository sites in Canada(the Trenton and Guelph regions in Ontario),heat generated in DGRs(thermal factor),dry densities and mass ratios of bentonite and sand mixtures(physical factors)on the swelling behavior and ability of bentonite-based materials.In this study,swelling tests are conducted on B/S mixtures with different B/S mix ratios(20/80 to 70/30),compacted at different dry densities(ρd=1.6-2 g/cm^(3)),saturated with different types of water(distilled water and simulated deep groundwater of Trenton and Guelph)and exposed to different temperatures(20℃-80℃).Moreover,scanning electron microscopy(SEM)analyses,mercury intrusion porosimetry(MIP)tests and X-ray diffractometry(XRD)analyses are carried out to evaluate the morphological,microstructural and mineralogical characteristics of the B/S mixtures.The test results indicate that the swelling potential of the B/S mixtures is significantly affected by these physical and chemical factors as well as the combined effects of the chemical and thermal factors.A significant decrease in the swelling capacity is observed when the B/S materials are exposed to the aforementioned groundwaters.A large decrease in the swelling capacity is observed for higher bentonite content in the mixtures.Moreover,higher temperatures intensify the chemically-induced reduction of the swelling capacity of the B/S barrier materials.This decrease in the swelling capacity is caused by the chemical and/or microstructural changes of the materials.The results from this research will help engineers to design and build EBSs for DGRs with similar groundwater and thermal conditions.展开更多
A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics o...A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics of the water-swelling material on the water polluted with COD and BOD, as an impermeable material at coastal landfill sites, are examined by laboratory swelling ratio test. Furthermore, the factor in which it influences the swelling pressure of water-swelling material is clarified by measuring the swelling pressure. As the results, the COD nor the BOD concentrations in the soaked water influence the swelling ratio of the water-swelling material. When the thicknesses of water-swelling material are 2 mm and 3 mm, the maximum swelling pressure of 0.5 MPa or more that corresponds to hydraulic pressure by depth of 50 m is possessed.展开更多
2'-methacryloxy-3α, 7α, I2α- trimethacryloyl cholic acid ethyl ester (CAGE4MA) has been prepared from cholic acid. Photo-polymeric resins were prepared from CAGE4MA. 2,2-bis[4-(2-hydroxy-3-methacrylyloxypropoxy...2'-methacryloxy-3α, 7α, I2α- trimethacryloyl cholic acid ethyl ester (CAGE4MA) has been prepared from cholic acid. Photo-polymeric resins were prepared from CAGE4MA. 2,2-bis[4-(2-hydroxy-3-methacrylyloxypropoxy)phenyllpropane (bis-GMA) was used for comparison, triethyleneglycol dimethacrylate (TEGDMA) was used as diluent. The polymerization was initiated by camphoroquinone (CQ)/N, N-dimethylaminoethyl methacrylate (DMAEMA) system. The conversion of CAGE4MA was 39% when the reaction time is 60s, which is lower than bis-GMA and TEGDMA. The swelling value of CAGE4MA resin was 0.41% in distilled water, which is much lower than those of bis-GMA resin (2.04%) and TEGDMA resin (4.77%) under the same conditions. Copolymers from CAGE4MA and TEGDMA have been prepared. With the increase of TEGDMA in mixture, the degree of conversion of CA GE4MA and swelling value increased. The swelling values of photocured resins in 0.1mol/L HCl were also measured.展开更多
The development of reliable fusion energy is one of the most important challenges in this century.The accelerated degradation of structural materials in fusion reactors caused by neutron irradiation would cause severe...The development of reliable fusion energy is one of the most important challenges in this century.The accelerated degradation of structural materials in fusion reactors caused by neutron irradiation would cause severe problems.Due to the lack of suitable fusion neutron testing facilities,we have to rely on ion irradiation experiments to test candidate materials in fusion reactors.Moreover,fusion neutron irradiation effects are accompanied by the simultaneous transmutation production of helium and hydrogen.One important method to study the He-H synergistic effects in materials is multiple simultaneous ion beams(MSIB)irradiation that has been studied for decades.To date,there is no convincing conclusion on these He-H synergistic effects among these experiments.Recently,a multiple ion beam in-situ transmission electron microscopy(TEM)analysis facility was developed in Xiamen University(XIAMEN facility),which is the first triple beam system and the only in-running in-situ irradiation facility with TEM in China.In this work,we conducted the first high-temperature triple simultaneous ion beams irradiation experiment with TEM observation using the XIAMEN facility.The responses to in-situ triple-ion beams irradiation in austenitic steel 304L SS and ferritic/martensitic steel CLF-1 were studied and compared with the results in dual-and single-ion beam(s)irradiated steels.Synergistic effects were observed in MSIB irradiated steels.Helium was found to be critical for cavity formation,while hydrogen has strong synergistic effect on increasing swelling.展开更多
The swelling particle grouting material has demonstrated remarkable plugging effectiveness in high-pressure and large-flow burst water within karst pipelines.Currently,current research on the rheolog-ical model,flow c...The swelling particle grouting material has demonstrated remarkable plugging effectiveness in high-pressure and large-flow burst water within karst pipelines.Currently,current research on the rheolog-ical model,flow computation theory,and plugging mechanism of this material is lacking.The conven-tional grouting slurry diffusion process,using the liquid-liquid two-phase flow method,fails to accurately simulate high solubility slurry and particle swelling.To address these limitations,this study established a precise constitutive model to describe the swelling particle slurry diffusion process in dynamic water.Additionally,a coupling calculation method was proposed to analyze the spatiotemporal heterogeneity of viscosity during slurry diffusion by considering the migration of slurry and the changes in viscosity.To investigate the interaction between particle swelling and flow field changes,a Compu-tational Fluid Dynamics-Discrete Element Method(CFD-DEM)coupling model was developed for the diffusion of swelling particle slurry.It is demonstrated that slurry viscosity increases exponentially within the diffusion front as the particle swelling rate rises,and the drag force exhibits an intriguing behavior of initially increasing and then decreasing as the slurry flows through the pipeline.Further-more,the CFD-DEM coupling model proved to be more accurate in describing viscosity distribution and diffusion distance compared to the finite element solution.The primary objective of this paper is to reveal the plugging mechanism and provide theoretical support for the engineering application of the swelling particle grouting material.展开更多
基金the funding support from Natural Sciences and Engineering Research Council of Canada (NSERC)
文摘Compacted bentonite-sand(B/S)mixtures have been used as a barrier material in engineered barrier systems(EBSs)of deep geological repositories(DGR)to store nuclear wastes.This study investigates the individual and combined effects of different chemical compositions of deep groundwaters(chemical factor)at potential repository sites in Canada(the Trenton and Guelph regions in Ontario),heat generated in DGRs(thermal factor),dry densities and mass ratios of bentonite and sand mixtures(physical factors)on the swelling behavior and ability of bentonite-based materials.In this study,swelling tests are conducted on B/S mixtures with different B/S mix ratios(20/80 to 70/30),compacted at different dry densities(ρd=1.6-2 g/cm^(3)),saturated with different types of water(distilled water and simulated deep groundwater of Trenton and Guelph)and exposed to different temperatures(20℃-80℃).Moreover,scanning electron microscopy(SEM)analyses,mercury intrusion porosimetry(MIP)tests and X-ray diffractometry(XRD)analyses are carried out to evaluate the morphological,microstructural and mineralogical characteristics of the B/S mixtures.The test results indicate that the swelling potential of the B/S mixtures is significantly affected by these physical and chemical factors as well as the combined effects of the chemical and thermal factors.A significant decrease in the swelling capacity is observed when the B/S materials are exposed to the aforementioned groundwaters.A large decrease in the swelling capacity is observed for higher bentonite content in the mixtures.Moreover,higher temperatures intensify the chemically-induced reduction of the swelling capacity of the B/S barrier materials.This decrease in the swelling capacity is caused by the chemical and/or microstructural changes of the materials.The results from this research will help engineers to design and build EBSs for DGRs with similar groundwater and thermal conditions.
文摘A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics of the water-swelling material on the water polluted with COD and BOD, as an impermeable material at coastal landfill sites, are examined by laboratory swelling ratio test. Furthermore, the factor in which it influences the swelling pressure of water-swelling material is clarified by measuring the swelling pressure. As the results, the COD nor the BOD concentrations in the soaked water influence the swelling ratio of the water-swelling material. When the thicknesses of water-swelling material are 2 mm and 3 mm, the maximum swelling pressure of 0.5 MPa or more that corresponds to hydraulic pressure by depth of 50 m is possessed.
文摘2'-methacryloxy-3α, 7α, I2α- trimethacryloyl cholic acid ethyl ester (CAGE4MA) has been prepared from cholic acid. Photo-polymeric resins were prepared from CAGE4MA. 2,2-bis[4-(2-hydroxy-3-methacrylyloxypropoxy)phenyllpropane (bis-GMA) was used for comparison, triethyleneglycol dimethacrylate (TEGDMA) was used as diluent. The polymerization was initiated by camphoroquinone (CQ)/N, N-dimethylaminoethyl methacrylate (DMAEMA) system. The conversion of CAGE4MA was 39% when the reaction time is 60s, which is lower than bis-GMA and TEGDMA. The swelling value of CAGE4MA resin was 0.41% in distilled water, which is much lower than those of bis-GMA resin (2.04%) and TEGDMA resin (4.77%) under the same conditions. Copolymers from CAGE4MA and TEGDMA have been prepared. With the increase of TEGDMA in mixture, the degree of conversion of CA GE4MA and swelling value increased. The swelling values of photocured resins in 0.1mol/L HCl were also measured.
基金Project supported by the National Natural Science Foundation of China(Grant No.11935004).
文摘The development of reliable fusion energy is one of the most important challenges in this century.The accelerated degradation of structural materials in fusion reactors caused by neutron irradiation would cause severe problems.Due to the lack of suitable fusion neutron testing facilities,we have to rely on ion irradiation experiments to test candidate materials in fusion reactors.Moreover,fusion neutron irradiation effects are accompanied by the simultaneous transmutation production of helium and hydrogen.One important method to study the He-H synergistic effects in materials is multiple simultaneous ion beams(MSIB)irradiation that has been studied for decades.To date,there is no convincing conclusion on these He-H synergistic effects among these experiments.Recently,a multiple ion beam in-situ transmission electron microscopy(TEM)analysis facility was developed in Xiamen University(XIAMEN facility),which is the first triple beam system and the only in-running in-situ irradiation facility with TEM in China.In this work,we conducted the first high-temperature triple simultaneous ion beams irradiation experiment with TEM observation using the XIAMEN facility.The responses to in-situ triple-ion beams irradiation in austenitic steel 304L SS and ferritic/martensitic steel CLF-1 were studied and compared with the results in dual-and single-ion beam(s)irradiated steels.Synergistic effects were observed in MSIB irradiated steels.Helium was found to be critical for cavity formation,while hydrogen has strong synergistic effect on increasing swelling.
基金supported by the National Natural Science Foundation of China for the Young Scientists Fund,China (grant No.52109126)the National Key Research and Development Program of China,China (grant No.202103AA080016).
文摘The swelling particle grouting material has demonstrated remarkable plugging effectiveness in high-pressure and large-flow burst water within karst pipelines.Currently,current research on the rheolog-ical model,flow computation theory,and plugging mechanism of this material is lacking.The conven-tional grouting slurry diffusion process,using the liquid-liquid two-phase flow method,fails to accurately simulate high solubility slurry and particle swelling.To address these limitations,this study established a precise constitutive model to describe the swelling particle slurry diffusion process in dynamic water.Additionally,a coupling calculation method was proposed to analyze the spatiotemporal heterogeneity of viscosity during slurry diffusion by considering the migration of slurry and the changes in viscosity.To investigate the interaction between particle swelling and flow field changes,a Compu-tational Fluid Dynamics-Discrete Element Method(CFD-DEM)coupling model was developed for the diffusion of swelling particle slurry.It is demonstrated that slurry viscosity increases exponentially within the diffusion front as the particle swelling rate rises,and the drag force exhibits an intriguing behavior of initially increasing and then decreasing as the slurry flows through the pipeline.Further-more,the CFD-DEM coupling model proved to be more accurate in describing viscosity distribution and diffusion distance compared to the finite element solution.The primary objective of this paper is to reveal the plugging mechanism and provide theoretical support for the engineering application of the swelling particle grouting material.