This paper was designed to verify the influence of phosphate on water-holding capacity (WHC) and texture of emulsiontype sausage prepared with pre-rigor meat, ageing meat or frozen meat. Pre-rigor pork, ageing pork ...This paper was designed to verify the influence of phosphate on water-holding capacity (WHC) and texture of emulsiontype sausage prepared with pre-rigor meat, ageing meat or frozen meat. Pre-rigor pork, ageing pork and frozen pork were pre-blended with five levels of phosphate and made into emulsion-type sausage. The yield, hardness and total expressible fluid (TEF) were measured with texture profile analysis machine and pressiometer when emulsion-type sausage was produced. Meanwhile, hardness and purge loss (PL) were measured during 30 d storage. As emusion-type sausage made by pre-rigor meat, higher yield and relatively stable hardness could be found. It indicated that increasing of phosphate level caused an alleviatable effects in increasing of hardness when emulsion-type sausage made by pre-rigor meat, but opposite effects made by ageing meat or frozen meat. The distribution of PL of emulsion-type sausage was found to be affected by phosphate addition. Significant decrease of PL could not be obtained by increasing of phosphate level during storage. Pre-rigor meat improved WHC and texture of emulsion-type sausage. Problem of WHC and texture of emulsiontype sausage during storage could not be resolved by single use of phosphate at relatively higher level (3%) of NaCl.展开更多
In Karst drainage basins, there are the ground water and underground water exchanging frequently, and the shortage of water resources due to having the special double aquifer mediums and unique surface and subsurface ...In Karst drainage basins, there are the ground water and underground water exchanging frequently, and the shortage of water resources due to having the special double aquifer mediums and unique surface and subsurface river systematic structure. This paper is to select 20 research sampling areas coming fromGuizhouProvince, and according to the spectral characteristics of the catchment water-holding mediums and vegetations, and using the remote sensing technique, extract the watershed vegetation index. According to the principle of principal component analysis, using the software of Spss and Matlab is to analyze the impacts of watershed vegetation type on the catchment water-holding ability, and establish the principal component analysis function. Studies have shown that: 1) the watershed vegetation coverage rate plays an important role in Karst basin water-holding ability;2) the catchment water-holding ability is the comprehensive reflection and manifestation of the Catchment Water-storing Capacity (CWC);3) it is much better effects and higher accuracy to monitor/forecast the catchment water-holding volume by using the vegetation indices.展开更多
The Chinese Loess Plateau has long been plagued by severe soil erosion and water scarcity.In this study,we proposed a technique involving the combined use of polymer SH and ryegrass and evaluated its effectiveness in ...The Chinese Loess Plateau has long been plagued by severe soil erosion and water scarcity.In this study,we proposed a technique involving the combined use of polymer SH and ryegrass and evaluated its effectiveness in modifying the water-holding characteristics of loess on the Chinese Loess Plateau(Chinese loess).We analysed the volumetric water content and water potential of untreated loess,treated loess with single polymer SH,treated loess with single ryegrass,and treated loess with both polymer SH and ryegrass using the loess samples collected from the Chinese Loess Plateau in July 2023.Moreover,fractal theory was used to analyse the fractal characteristics of the soil structure,and wet disintegration tests were conducted to assess the structural stability of both untreated and treated loess samples.The results showed that the loess samples treated with both polymer SH and ryegrass presented much higher volumetric water content and water potential than the untreated loess samples and those treated only with ryegrass or polymer SH.Moreover,the planting density of ryegrass affected the combined technique,since a relatively low planting density(20 g/m2)was conducive to enhancing the water-holding capacity of Chinese loess.The fractal dimension was directly correlated with both volumetric water content and water potential of Chinese loess.Specifically,since loess treated with both polymer SH and ryegrass was more saturated with moisture,its water potential increased,thus improving its water-holding capacity and fractal dimension.The combined technique better resisted disintegration than ryegrass alone but had slightly less resistance than polymer SH alone.This study provides insight into soil reinforcement and soil water management using polymetric materials and vegetation on the Chinese Loess Plateau.展开更多
Soybean hulls, an abundant byproduct of soybean processing, contain rich phytochemicals, fibers, proteins, and minerals. Currently soybean hulls are primarily used as animal feeds. For value-added soybean hull utiliza...Soybean hulls, an abundant byproduct of soybean processing, contain rich phytochemicals, fibers, proteins, and minerals. Currently soybean hulls are primarily used as animal feeds. For value-added soybean hull utilization, 25% soybean hulls were substituted for amaranth or whole oat flour (WOF) in novel gluten-free cookies. Composition, nutritional values, water-holding capacities, correlation between properties, and pasting and rheological properties of soybean hulls, amaranth, and WOF were appraised in comparison to wheat flour. Water loss, cookie texture, and geometrical properties of the cookies were examined. The results disclosed that soybean hulls, amaranth and WOF contain higher protein content, minerals, fiber, special amino acids, and critical vitamins (C and K) than wheat flour. Considerably higher total amino acid content was found in soybean hulls (18.33%) than wheat flour (12.77%). Water-holding capacities increased by replacing amaranth and WOF with soybean hulls. Soybean hulls exhibited higher rheological elastic properties than amaranth, WOF and wheat flours. The soybean hulls utilized in amaranth or WOF cookies greatly improved their nutritional value, the water retention and moisture content along with acceptable physical properties when compared to wheat flour cookies. This study explored the feasibility and potential of utilizing soybean hulls with amaranth and WOF in gluten-free bakery products and other food applications.展开更多
基金supported by the Key Technology R&D Program of China during the 11th Five-Year PlanPeriod (2006BAD05A15)
文摘This paper was designed to verify the influence of phosphate on water-holding capacity (WHC) and texture of emulsiontype sausage prepared with pre-rigor meat, ageing meat or frozen meat. Pre-rigor pork, ageing pork and frozen pork were pre-blended with five levels of phosphate and made into emulsion-type sausage. The yield, hardness and total expressible fluid (TEF) were measured with texture profile analysis machine and pressiometer when emulsion-type sausage was produced. Meanwhile, hardness and purge loss (PL) were measured during 30 d storage. As emusion-type sausage made by pre-rigor meat, higher yield and relatively stable hardness could be found. It indicated that increasing of phosphate level caused an alleviatable effects in increasing of hardness when emulsion-type sausage made by pre-rigor meat, but opposite effects made by ageing meat or frozen meat. The distribution of PL of emulsion-type sausage was found to be affected by phosphate addition. Significant decrease of PL could not be obtained by increasing of phosphate level during storage. Pre-rigor meat improved WHC and texture of emulsion-type sausage. Problem of WHC and texture of emulsiontype sausage during storage could not be resolved by single use of phosphate at relatively higher level (3%) of NaCl.
文摘In Karst drainage basins, there are the ground water and underground water exchanging frequently, and the shortage of water resources due to having the special double aquifer mediums and unique surface and subsurface river systematic structure. This paper is to select 20 research sampling areas coming fromGuizhouProvince, and according to the spectral characteristics of the catchment water-holding mediums and vegetations, and using the remote sensing technique, extract the watershed vegetation index. According to the principle of principal component analysis, using the software of Spss and Matlab is to analyze the impacts of watershed vegetation type on the catchment water-holding ability, and establish the principal component analysis function. Studies have shown that: 1) the watershed vegetation coverage rate plays an important role in Karst basin water-holding ability;2) the catchment water-holding ability is the comprehensive reflection and manifestation of the Catchment Water-storing Capacity (CWC);3) it is much better effects and higher accuracy to monitor/forecast the catchment water-holding volume by using the vegetation indices.
基金supported by the Natural Science Foundation of Qinghai Province(2024-ZJ-987)the Natural Science Foundation of Qinghai University(2023-QGY-9).
文摘The Chinese Loess Plateau has long been plagued by severe soil erosion and water scarcity.In this study,we proposed a technique involving the combined use of polymer SH and ryegrass and evaluated its effectiveness in modifying the water-holding characteristics of loess on the Chinese Loess Plateau(Chinese loess).We analysed the volumetric water content and water potential of untreated loess,treated loess with single polymer SH,treated loess with single ryegrass,and treated loess with both polymer SH and ryegrass using the loess samples collected from the Chinese Loess Plateau in July 2023.Moreover,fractal theory was used to analyse the fractal characteristics of the soil structure,and wet disintegration tests were conducted to assess the structural stability of both untreated and treated loess samples.The results showed that the loess samples treated with both polymer SH and ryegrass presented much higher volumetric water content and water potential than the untreated loess samples and those treated only with ryegrass or polymer SH.Moreover,the planting density of ryegrass affected the combined technique,since a relatively low planting density(20 g/m2)was conducive to enhancing the water-holding capacity of Chinese loess.The fractal dimension was directly correlated with both volumetric water content and water potential of Chinese loess.Specifically,since loess treated with both polymer SH and ryegrass was more saturated with moisture,its water potential increased,thus improving its water-holding capacity and fractal dimension.The combined technique better resisted disintegration than ryegrass alone but had slightly less resistance than polymer SH alone.This study provides insight into soil reinforcement and soil water management using polymetric materials and vegetation on the Chinese Loess Plateau.
文摘Soybean hulls, an abundant byproduct of soybean processing, contain rich phytochemicals, fibers, proteins, and minerals. Currently soybean hulls are primarily used as animal feeds. For value-added soybean hull utilization, 25% soybean hulls were substituted for amaranth or whole oat flour (WOF) in novel gluten-free cookies. Composition, nutritional values, water-holding capacities, correlation between properties, and pasting and rheological properties of soybean hulls, amaranth, and WOF were appraised in comparison to wheat flour. Water loss, cookie texture, and geometrical properties of the cookies were examined. The results disclosed that soybean hulls, amaranth and WOF contain higher protein content, minerals, fiber, special amino acids, and critical vitamins (C and K) than wheat flour. Considerably higher total amino acid content was found in soybean hulls (18.33%) than wheat flour (12.77%). Water-holding capacities increased by replacing amaranth and WOF with soybean hulls. Soybean hulls exhibited higher rheological elastic properties than amaranth, WOF and wheat flours. The soybean hulls utilized in amaranth or WOF cookies greatly improved their nutritional value, the water retention and moisture content along with acceptable physical properties when compared to wheat flour cookies. This study explored the feasibility and potential of utilizing soybean hulls with amaranth and WOF in gluten-free bakery products and other food applications.