A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline...A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline(TC).As the carrier of MnFe_(2)O_(4),NBCs were synthesized from alfalfa,which has large specific surface area,graphite like structure and hierarchical porous structure.The adsorption isotherm indicated that NBCs/MnFe_(2)O_(4)-2:1 had the best adsorption performance for TC(347.56 mg g^(-1)).Through synergistic adsorption and photocatalysis,the removal rate of TC reached 84%,which was significantly higher than that of MnFe_(2)O_(4).Electrochemical impedance spectroscopy(EIS)and Photoluminescence(PL)characterization results showed that the introduction of NBCs improved the separation efficiency of photogenerated electron and hole pairs and enhanced the photocatalytic performance.Moreover,the adsorption,degradation mechanism and degradation path of TC by the catalyst were systematically analyzed by coupling HPLC–MS measurement with the theoretical calculation.Considering the advantages of excellent degradation performance,low cost,easy separation and environmental friendliness of NBCs/MnFe_(2)O_(4),this work was expected to provide a new path for the practical application of biochar.展开更多
In order to reduce the waste of resources and environmental pollution caused by excessive application of chemical fertilizers, improve the utilization rate of fertilizers, and promote the large-scale and high-quality ...In order to reduce the waste of resources and environmental pollution caused by excessive application of chemical fertilizers, improve the utilization rate of fertilizers, and promote the large-scale and high-quality development of the Chinese rose industry. In this experiment, corn stover biochar, phosphoric acid modified biochar and organic fertilizer were used as test materials, and the effects of mixed application of modified biochar and organic fertilizer on the growth and development of Chinese rose as well as soil physicochemical properties were investigated by using the method of pot planting test. The results showed that modified biochar with organic fertilizer had the most significant effect on the enhancement of soil pH, organic matter content and soil carbon-to-nitrogen ratio. After 120 d of planting, modified biochar with organic fertilizer had the most significant effect on the enhancement of plant height and crown width of Chinese rose;both organic fertilizer and modified biochar with organic fertilizer significantly increased the chlorophyll content of Chinese rose. The number of flowers and the number of branches were the highest in the modified biochar with organic fertilizer treatment. In conclusion, the application of modified biochar with organic fertilizer can better improve the soil pH, and increase the soil organic matter content and carbon-to-nitrogen ratio to change the biological traits of Chinese rose. The results of this study provide a theoretical basis for the reduction of chemical fertilizers and the resource utilization of agricultural wastes and guarantee the sustainable development of the cut flower industry.展开更多
Lithium-sulfur batteries are emerging as sustainable replacements for current lithium-ion batteries.The commercial viability of this novel type of battery is still under debate due to the extensive use of highly react...Lithium-sulfur batteries are emerging as sustainable replacements for current lithium-ion batteries.The commercial viability of this novel type of battery is still under debate due to the extensive use of highly reactive lithium-metal anodes and the complex electrochemistry of the sulfur cathode.In this research,a novel sulfur-based battery has been proposed that eliminates the need for metallic lithium anodes and other critical raw materials like cobalt and graphite,replacing them with biomass-derived materials.This approach presents numerous benefits,encompassing ample availability,cost-effectiveness,safety,and environmental friendliness.In particular,two types of biochar-based anode electrodes(non-activated and activated biochar)derived from spent common ivy have been investigated as alternatives to metallic lithium.We compared their structural and electrochemical properties,both of which exhibited good compatibility with the typical electrolytes used in sulfur batteries.Surprisingly,while steam activation results in an increased specific surface area,the non-activated ivy biochar demonstrates better performance than the activated biochar,achieving a stable capacity of 400 mA h g^(−1)at 0.1 A g^(−1)and a long lifespan(>400 cycles at 0.5 A g^(−1)).Our results demonstrate that the presence of heteroatoms,such as oxygen and nitrogen positively affects the capacity and cycling performance of the electrodes.This led to increased d-spacing in the graphitic layer,a strong interaction with the solid electrolyte interphase layer,and improved ion transportation.Finally,the non-activated biochar was successfully coupled with a sulfur cathode to fabricate lithium-metal-free sulfur batteries,delivering a specific energy density of~600 Wh kg^(−1).展开更多
Field monitoring was conducted to investigate and quantify the long-term effects of peanut shell biochar on soil-grass interaction over three years.Three 10 m5 m grassed plots were constructed in completely decomposed...Field monitoring was conducted to investigate and quantify the long-term effects of peanut shell biochar on soil-grass interaction over three years.Three 10 m5 m grassed plots were constructed in completely decomposed granitic soil.Two of them were amended,respectively,with 5%and 10%biochar contents(m^(3)/m^(3))for grass growth,while the third was without biochar amendment.During the threeyear monitoring,plant characteristics,saturated water permeability(k_(s))of grassed soil and soil suction were measured.The monitored results show that the grass leaf area index(LAI)and root length density(RLD)with biochar amendment were improved by 38%and 200%,respectively.In the grassed plot without biochar,a threshold RLD existed with a value of 1.7 cm/cm^(3),beyond which k_(s) raised pronouncedly.The threshold RLD increased by 52%when biochar content increased from 0%to 10%.This implies that biochar may restrict the increase in k_(s) of grassed soil due to the rise in the threshold RLD.The presence of biochar and grass can retain over 100%higher suction after heavy rainfalls,while 54%lower peak suction under evapotranspiration(ET)compared with the non-amended plot.Biochar can alleviate the negative effects on hydraulic properties caused by plant growth and reduce ET-induced excessive water loss.A 5%peanut shell biochar content is recommended for the long-term management of vegetated earthen infrastructures.展开更多
Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether bio...Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether biochar could promote plant growth and alleviate apple replant disease by reducing the growth of harmful soil microorganisms,changing soil microbial community structure and improving the soil environment.This experiment included five treatments:apple replant soil(CK),methyl bromide fumigation apple replant soil(FM),replant soil with biochar addition(2%),replant soil with F.oxysporum spore solution(8×10^(7)spores·mL^(-1)),and replant soil with biochar and F.oxysporum spore solution addition.Seedling biomass,the activity of antioxidant enzymes in the leaves and roots,and soil environmental variables were measured.Microbial community composition and community structure were analyzed using 16SrDNA and ITS2 gene sequencing.Biochar significantly reduced the abundance of F.oxysporum and increased soil microbial diversity and richness.Biochar also increased the soil enzyme activities(urease,invertase,neutral phosphatase,and catalase),the biomass(plant height,fresh weight,dry weight)and the activity of antioxidant enzymes(superoxide dismutase,peroxidase,and catalase).The root indexes of apple seedlings was also increased in replant soil by biochar.In sum,biochar promoted the growth of plants,improved the replant soil environment,and alleviated apple replant disease.展开更多
In tropical environments, most soybean growth studies have utilized rice husk biochar (RHB) in soil, even though it is low in nitrogen, potassium, and phosphorous. This may not give short-term agronomic performance re...In tropical environments, most soybean growth studies have utilized rice husk biochar (RHB) in soil, even though it is low in nitrogen, potassium, and phosphorous. This may not give short-term agronomic performance relative to enriched biochar. Moreover, the impact of inoculating soybean seeds with atmospheric nitrogen-fixing bacterium Bradyrhizobium japonicum on nodulation and grain yield has produced inconclusive findings in the literature. This research therefore aims to assess the effect of poultry manure (PM), poultry manure biochar (PMB) and RHB alone and in combinations on grain yield, dry shoot and root biomass of soybeans in the semi-deciduous agro-ecological zone. In addition, the effect of B. japonicum inoculated and non-inoculated soybean seeds on nodulation and grain yield was also investigated. The treatments followed a split plot design studying inoculation and non-inoculation, soil amendments (eight), and control subplot factors, respectively. The results show that the amendment of a ferric acrisol with 4 Mg∙ha−1 PM, 10 Mg∙ha−1 RHB + 2 Mg∙ha−1 PM, and 5 Mg∙ha−1 RHB + 4 Mg∙ha−1 PMB with B. japonicum inoculated seed produced significantly greater grain yield (p = 0.05). PM treatment had a significant (p B. japonicum-inoculated soybean seeds significantly (p = 0.014) increased soybean nodulation. This study suggests that RHB combined with PM or PMB provides a beneficial source of N, P, and K, resulting in improved soybean yield and nodulation in a tropical ferric acrisol.展开更多
This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition...This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.展开更多
Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water content...Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water contents in the covers to maintain vegetation growth in semiarid conditions.In this study,biochar‐amended soil was combined with subsurface drip irrigation,and the water preservation characteristics of this treatment were investigated through a series of one‐dimensional soil column tests.To ascertain the best treatment method specific to semiarid climatic conditions,the test soil was amended with 0%,1%,3%,and 5%biochar.Automatic irrigation devices equipped with soil moisture sensors were used to control the subsurface water content with the aim of enhancing vegetation growth.Each soil column test lasted 150 h,during which the volumetric water contents and soil suction data were recorded.The experimental results reveal that the soil specimen amended with 3%biochar is the most water‐saving regardless of the time cost.Soil with a higher biochar content(e.g.,5%)consumes a more significant amount of water due to the enhancement of the water‐holding capacity.Based on the experimental results,it can be concluded that the appropriate ratio can be determined within 1%–3%,which can reduce not only the amount of irrigated/used water but also the time cost.Such technology can be explored for water content regulation in green infrastructure and the development of barriers for protecting the environment around deep underground waste containment.展开更多
Biochar is a reactive carrier as it may be partially gasified with steam in steam reforming,which could influence the formation of reaction intermediates and modify catalytic behaviors.Herein,the Ni/biochar as well as...Biochar is a reactive carrier as it may be partially gasified with steam in steam reforming,which could influence the formation of reaction intermediates and modify catalytic behaviors.Herein,the Ni/biochar as well as two comparative catalysts,Ni/Al_(2)O_(3) and Ni/SiO_(2),with low nickel loading(2%(mass))was conducted to probe involvement of the varied carriers in the steam reforming.The results indicated that the Ni/biochar performed excellent catalytic activity than Ni/SiO_(2) and Ni/Al_(2)O_(3),as the biochar carrier facilitated quick conversion of the -OH from dissociation of steam to gasify the oxygen-rich carbonaceous intermediates like C=O and C-O-C,resulting in low coverage while high exposure of nickel species for maintaining the superior catalytic performance.In converse,strong adsorption of aliphatic intermediates over Ni/Al_(2)O_(3) and Ni/SiO_(2) induced serious coking with polymeric coke as the main type(21.5%and 32.1%,respectively),which was significantly higher than that over Ni/biochar(3.9%).The coke over Ni/biochar was mainly aromatic or catalytic type with nanotube morphology and high crystallinity.The high resistivity of Ni/biochar towards coking was due to the balance between formation of coke and gasification of coke and partially biochar with steam,which created developed mesopores in spent Ni/biochar while the coke blocked pores in Ni/Al_(2)O_(3) and Ni/SiO_(2) catalysts.展开更多
Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materia...Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materials(SCMs)to stabilize DMS under ambient and carbon dioxide(CO_(2))curing conditions.Several proprietary experimental tests were conducted to investigate the stabilized DMS.Furthermore,the carbonation-induced mineralogical,thermal,and microstructural properties change of the samples were explored.The findings show that the compressive strength of the stabilized DMS fulfilled the 7-d requirement(0.7-2.1 MPa)for pavement and building foundations.Replacing rMgO with SCMs such as biochar or ground granulated blast-furnace slag(GGBS)altered the engineering properties and particle packing of the stabilized soils,thus influencing their performances.Biochar increased the porosity of the samples,facilitating higher CO_(2) uptake and improved ductility,while GGBS decreased porosity and increased the dry density of the samples,resulting in higher strength.The addition of SCMs also enhanced the water retention capacity and modified the pH of the samples.Microstructural analysis revealed that the hydrated magnesium carbonates precipitated in the carbonated samples provided better cementation effects than brucite formed during rMgO hydration.Moreover,incorporating SCMs reduced the overall global warming potential and energy demand of the rMgO-based systems.The biochar mixes demonstrated lower toxicity and energy consumption.Ultimately,the rMgO and biochar blend can serve as an environmentally friendly additive for soft soil stabilization and permanent fixation of significant amounts of CO_(2) in soils through mineral carbonation,potentially reducing environmental pollution while meeting urbanization needs.展开更多
Long term tillage in mollisol of Northeast China has led to an inhomogeneous distribution of soil organic matter content.Biochar,a carbon material,changes the soil carbon pool and physical-chemical characteristics aft...Long term tillage in mollisol of Northeast China has led to an inhomogeneous distribution of soil organic matter content.Biochar,a carbon material,changes the soil carbon pool and physical-chemical characteristics after adding to the soil.However,the mechanism remains unclear for the relation between the soil organic matter level and biochar amount.So,the soil physical and chemical properties and soybean growth in a two-year pot experiment were detected at three levels of soil organic matter and three biochar additions(0,1%and 10%).The difference was found in two biochar application rates.The 1%biochar addition had no positive effect on the soil chemical properties based the two-year experiment.However,10%biochar application significantly increased the soil water content(8.0%-39.7%),the total porosity(9.7%-21.3%),pH(0.26-0.84 unit),organic matter content(89.0%-261.2%),and the available potassium content(29.0%-109.1%).The biomass of soybean increased by 19.4%-78.1%after biochar addition,yet,the soil bulk density reduced at the range of 12.6%-26.0%by 10%biochar addition.Only the 100-grain weight was correlated to the interaction of biochar and the native soil organic matter.All the indicators showed that the interaction between biochar and soil organic matter level was weak in mollisol.The effects of biochar on the physical-chemical properties relied on its amount.When biochar is applied to the soil,the amount of biochar should be considered rather than the native soil organic matter level.展开更多
An in-vitro experiment was conducted to assess the interaction between biochar and algae on a problem soil. Experiments were performed with and without algae to observe the effectiveness of algae for overcoming the ch...An in-vitro experiment was conducted to assess the interaction between biochar and algae on a problem soil. Experiments were performed with and without algae to observe the effectiveness of algae for overcoming the challenges posed by problem soils. At the end of incubation periods, the adsorption and desorption of phosphorus (P) on a problem soil vis-á-vis algal inoculation were determined. Our results showed that different types of biochars adsorbed different amounts of P suggesting that the source of biochar played a crucial role in determining its behavior towards P. Tannery waste biochar significantly adsorbed 147% and 35% more P compared to that of the chicken litter and orange peel biochars respectively. Significant reductions in adsorption were observed when the biochar was used in combination with the algae which could be due to the beneficial effects of algae leading to the amelioration of the problem soil. Adsorption was reduced to 34%, 24% and 20% for the orange peel biochar + algae, chicken litter biochar + algae and tannery waste biochar + algae, respectively compared to the corresponding biochars present as a single solid. Phosphorus (P) desorption was also reduced significantly in presence of algal inoculation. Overall our findings suggest that the application of algae along with biochar in the problem soil could reduce the adsorption of P which would influence the availability of P.展开更多
Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between phy...Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between physical properties and LOC fractions. A field positioning experiment was performed in Mollisols region of Northeast China to evaluate the influence of maize stalk biochar on the spatial distribution and temporal changes of physical properties and LOC fractions. Maize stalk biochar treatments included C1(1.5 kg·hm^(-2)), C2(3 kg·hm^(-2)), C3(15 kg·hm^(-2)), C4(30 kg·hm^(-2)), and CK(0). The results showed that maize stalk biochar increased soil water contents(SWC) and soil porosity(SP), but reduced bulk density(BD). Maize stalk biochar reduced dissolved organic carbon(DOC) contents in the 0-20 cm soil layer, ranging from 0.25 g·kg^(-1) to 0.31 g·kg^(-1) in harvest period, while increased in the 20-40 cm soil layer. In addition, the application of biochar had a significant impact on the spatial distribution and temporal change of SWC, BD, SP, DOC, hot-water extractable carbon(HWC), acid hydrolyzed organic carbon(AHC Ⅰ, Ⅱ), and readily oxidized organic carbon(ROC). High amounts of maize stalk biochar up-regulated the contents of soil organic carbon SOC, HWC, AHC Ⅰ, AHC Ⅱ, and ROC. In addition, SWC and SP were the key physical factors to affect LOC fractions. In conclusions, maize stalk biochar could improve physical properties, and then influence LOC fractions, and maize stalk biochar could be used as an organic amendment for restoring degraded soils governed by their rates of addition.展开更多
Biomass-H_(2)O gasification is a complex thermochemical reaction,including three processes of volatile removal:homogeneous/heterogeneous reforming,biochar gasification and etching.The rate-determining step is biochar-...Biomass-H_(2)O gasification is a complex thermochemical reaction,including three processes of volatile removal:homogeneous/heterogeneous reforming,biochar gasification and etching.The rate-determining step is biochar-H_(2)O gasification and etching so the DFT is carried out to see the catalytic role of different metal elements(K/Ni)in the zigzag biochar model.The calculation results show that the gasification of biochar-H_(2)O needs to go through four processes:dissociative adsorption of water,hydrogen transfer(hydrogen desorption,hydrogen atom transfer),carbon dissolution and CO desorption.The energy barrier indicated that the most significant step in reducing the activation energy of K is reflected in the hydrogen transfer step,which is reduced from 374.14 kJ/mol to 152.41 kJ/mol;the catalytic effect of Ni is mainly reflected in the carbon dissolution step,which is reduced from 122.34 kJ/mol to 84.8 kJ/mol.The existence of K causes the edge to have a stronger attraction to H and does not destroy theπbonds of biochar molecules.The destruction ofπbonds is mainly due to the role of H free radicals,while the destruction ofπbonds will lead to easier C-C bond rupture.Ni shows a strong attraction to O in OH,which forms strong Ni-O chemical bonds.Ni can also destroy the aromatic structure directly,making the gasification easier to happen.This study explored the catalytic mechanism of K/Ni on the biochar-H_(2)O gasification at the molecular level and looked forward to the potential synergy of K/Ni,laying a foundation for experimental research and catalyst design.展开更多
In this study, the adsorption effect of β-cyclodextrin modified biochar (BC) on phenanthrene (PHE) in contaminated soil was investigated, aiming to provide an efficient and environmentally friendly remediation strate...In this study, the adsorption effect of β-cyclodextrin modified biochar (BC) on phenanthrene (PHE) in contaminated soil was investigated, aiming to provide an efficient and environmentally friendly remediation strategy for Polycyclic Aromatic Hydrocarbons (PAHs) contaminated soil. Through kinetic and isotherm analysis, β-CDBC-CA showed excellent phenanthrene adsorption performance, and the adsorption effect increased with the increase of time and was affected by temperature. The results show that β-CDBC-CA can not only effectively adsorb phenanthrene in soil, but also serve as a surfactant to help desorption phenanthrene adsorbed by soil organic matter and improve the efficiency of microbial degradation. The experimental data showed that the Elovich model could describe the adsorption behavior of β-CDBC-CA on phenanthrene well, while Langmuir and Freundlich models performed better in fitting parameters, revealing the adsorption mechanism of phenanthrene in contaminated soil by β-cyclodextrin-modified biochar. In addition, temperature has a significant effect on the adsorption capacity of β-CDBC-CA, and its application in soil remediation can be optimized by adjusting temperature. This study not only provides new materials and technical means for soil remediation but also provides important data support for an in-depth understanding of the environmental behavior of PAHs. By citing relevant research results, this study further improves the control and understanding of environmental risks of PAHs, which is of great significance for the protection of ecological environment and human health.展开更多
In this paper, biochar (BC) was used as raw material, activated by deionizing aqueous solution, NaCl solution, CA solution and HCl solution respectively. Epichlorohydrin (EPI) was used as crosslinking agent, and β-cy...In this paper, biochar (BC) was used as raw material, activated by deionizing aqueous solution, NaCl solution, CA solution and HCl solution respectively. Epichlorohydrin (EPI) was used as crosslinking agent, and β-cyclodextrin (β-CD) was used to modify biochar (BC). The prepared modified biochar materials were labeled with β-CDBC, β-CDBC-Na, β-CDBC-CA and β-CDBC-H, respectively. The infrared spectrum, X-ray diffractometer, scanning electron microscope and specific surface area of the four modified materials were tested. The results showed that the C-O stretching vibration peak at 1020 cm<sup>−</sup><sup>1</sup> of the modified materials was slightly offset compared with that of biochar. The characteristic absorption peaks of XRD pattern decrease obviously at 2θ = 26.7˚ and 29.5˚. It can be obviously observed on the electron microscope image that the surface is loaded or formed clathrates, and BET data and graphs also show that the specific surface area of the modified biochar is larger. Therefore, β-cyclodextrin successfully modified biochar and formed clathrates on the surface of biochar or was loaded in the pore structure of biochar, especially β-CDBC-CA achieved better modification effect. Because biochar and β-cyclodextrin raw materials are cheap, easy to prepare and green, and less prone to secondary pollution, it has a good advantage in environmental governance.展开更多
Two major problems facing agriculture at present are soil pollution and the disposal of solid wastes generated during plant growth. The method of preparing biochar from solid wastes produced by plants is a means of ma...Two major problems facing agriculture at present are soil pollution and the disposal of solid wastes generated during plant growth. The method of preparing biochar from solid wastes produced by plants is a means of maximizing the use of resources to combat the problem of soil pollution. In this study, we did not choose straw in the traditional sense but the waste branches from grape pruning, which has higher lignin cellulose, as the raw material. The biochar derived from grape branches pyrolyzed at 300˚C for two hours was utilized as a raw material to prepare modified biochar with varying concentrations of phosphoric acid. The adsorption performance and mechanism of Cd<sup>2 </sup> were explored through experiments involving different concentrations, addition amounts, reaction times, kinetic analyses, and isothermal adsorption tests. The findings indicated that the optimal adsorption of Cd<sup>2 </sup> occurred with a 20% phosphoric acid concentration, achieving the highest adsorption rate of 84.62%. At a dosage of 10 g/L, the maximum adsorption capacity reached 7.02 mg/g. The adsorption kinetics and isothermal adsorption of Cd<sup>2 </sup> on biochar modified with 0.2% phosphoric acid (0.2 PB) closely followed the pseudo-first-order kinetics model (R<sup>2</sup> > 0.98) and the Freundlich model (R<sup>2</sup> > 0.97), respectively. This suggests that the adsorption process involves both physical and chemical mechanisms. SEM and FTIR analyses revealed that phosphoric acid modification primarily increased the biochar’s specific surface area and enhanced certain original functional groups. The adsorption process predominantly involved rapid ion diffusion and chemical adsorption, as confirmed by kinetic analysis and isothermal adsorption model analysis. In summary, the adsorption efficiency of 0.2 PB significantly improved, showing potential and feasibility for heavy metal remediation in soil. This supports the environmentally friendly concept of “treating waste with waste”.展开更多
As ecosystem degradation becomes more widespread, there is a growing need for efficient and effective forest restoration methods. Direct seeding is one such method that can be used to cover a relatively large area, pa...As ecosystem degradation becomes more widespread, there is a growing need for efficient and effective forest restoration methods. Direct seeding is one such method that can be used to cover a relatively large area, particularly places with difficult-to-access terrain. One major obstacle hampering successful restoration via direct seeding is seed predation, as seeds are damaged or eaten. We tested the effectiveness of encrusting six species of native seeds with biochar-based coating in reducing the seeds’ chances of being predated on degraded hillsides and landslide scars in Hong Kong. The six seeded species are native trees and shrubs, including both late-successional and pioneer species that are present in forests and shrublands. Our results show that biochar-based seed coats were able to significantly reduce overall seed predation by 5.77% (SE = 1.41, p < 0.05). Additionally, we found varied effectiveness of the biochar-based seed coats across species and seed morphology. Of the six species that were included, four of them had significantly reduced seed predation after encrusting with biochar-based seed coats, while two other species were not significantly affected by the biochar-based seed coats. When we investigated seed predation against seed morphology, we found that while the species with larger seeds were more likely to be predated when sown without any biochar-based seed coat, the effectiveness of the biochar-based seed coat to reduce predation also increased with larger seeds. Our results suggest that encrusting seeds with biochar-based seed coats is an effective means of reducing seed predation.展开更多
The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discha...The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.展开更多
Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining,...Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining, industrial activities, improper usage of fertilizers and pesticides, and indiscriminate open waste disposal bring about an increase in the presence of heavy metals in the environment. In the Keffi Metropolis, different elements lead to land contamination which debilitates soil quality, plant survival, human well-being, and the environment as a result of extensive dispersion or quantity of heavy metals in the soil and water. In recent years, biochar has emerged as a promising soil amendment for mitigating heavy metal pollution due to its unique physicochemical properties. This paper provides the effects of softwood pellet biochar on the retention of heavy metals in contaminated soils. A microcosm experiment was carried out to investigate the effects of biochar on the retention of heavy metals in contaminated soils. This research aimed to give an overview of the effects of softwood biochar at different temperatures (550˚C and 700˚C) on the retention of heavy metals and metalloids released from the soil during water inundation. The results show that the addition of organic matter (grass chippings) minimizes heavy metal mobilization. Also, biochar at high temperatures is more effective than those at low temperatures. The expected outcome of the research analysis includes providing insights into the role of biochar in retaining heavy metal contamination and further understanding the use of biochar as a sorbent for the management of contaminated soil.展开更多
基金gratefully acknowledge the financial support for this research from the National Natural Science Foundation of China(Grant No.:21978047,21776046)the Six Talent Climax Foundation of Jiangsu(Grant No.:XCL-079).
文摘A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline(TC).As the carrier of MnFe_(2)O_(4),NBCs were synthesized from alfalfa,which has large specific surface area,graphite like structure and hierarchical porous structure.The adsorption isotherm indicated that NBCs/MnFe_(2)O_(4)-2:1 had the best adsorption performance for TC(347.56 mg g^(-1)).Through synergistic adsorption and photocatalysis,the removal rate of TC reached 84%,which was significantly higher than that of MnFe_(2)O_(4).Electrochemical impedance spectroscopy(EIS)and Photoluminescence(PL)characterization results showed that the introduction of NBCs improved the separation efficiency of photogenerated electron and hole pairs and enhanced the photocatalytic performance.Moreover,the adsorption,degradation mechanism and degradation path of TC by the catalyst were systematically analyzed by coupling HPLC–MS measurement with the theoretical calculation.Considering the advantages of excellent degradation performance,low cost,easy separation and environmental friendliness of NBCs/MnFe_(2)O_(4),this work was expected to provide a new path for the practical application of biochar.
文摘In order to reduce the waste of resources and environmental pollution caused by excessive application of chemical fertilizers, improve the utilization rate of fertilizers, and promote the large-scale and high-quality development of the Chinese rose industry. In this experiment, corn stover biochar, phosphoric acid modified biochar and organic fertilizer were used as test materials, and the effects of mixed application of modified biochar and organic fertilizer on the growth and development of Chinese rose as well as soil physicochemical properties were investigated by using the method of pot planting test. The results showed that modified biochar with organic fertilizer had the most significant effect on the enhancement of soil pH, organic matter content and soil carbon-to-nitrogen ratio. After 120 d of planting, modified biochar with organic fertilizer had the most significant effect on the enhancement of plant height and crown width of Chinese rose;both organic fertilizer and modified biochar with organic fertilizer significantly increased the chlorophyll content of Chinese rose. The number of flowers and the number of branches were the highest in the modified biochar with organic fertilizer treatment. In conclusion, the application of modified biochar with organic fertilizer can better improve the soil pH, and increase the soil organic matter content and carbon-to-nitrogen ratio to change the biological traits of Chinese rose. The results of this study provide a theoretical basis for the reduction of chemical fertilizers and the resource utilization of agricultural wastes and guarantee the sustainable development of the cut flower industry.
基金supported by the Special Research Fund(BOF23PD03,P.Salimi)the Research Foundation Flanders(FWO SB-1S92022N,W.Vercruysse).
文摘Lithium-sulfur batteries are emerging as sustainable replacements for current lithium-ion batteries.The commercial viability of this novel type of battery is still under debate due to the extensive use of highly reactive lithium-metal anodes and the complex electrochemistry of the sulfur cathode.In this research,a novel sulfur-based battery has been proposed that eliminates the need for metallic lithium anodes and other critical raw materials like cobalt and graphite,replacing them with biomass-derived materials.This approach presents numerous benefits,encompassing ample availability,cost-effectiveness,safety,and environmental friendliness.In particular,two types of biochar-based anode electrodes(non-activated and activated biochar)derived from spent common ivy have been investigated as alternatives to metallic lithium.We compared their structural and electrochemical properties,both of which exhibited good compatibility with the typical electrolytes used in sulfur batteries.Surprisingly,while steam activation results in an increased specific surface area,the non-activated ivy biochar demonstrates better performance than the activated biochar,achieving a stable capacity of 400 mA h g^(−1)at 0.1 A g^(−1)and a long lifespan(>400 cycles at 0.5 A g^(−1)).Our results demonstrate that the presence of heteroatoms,such as oxygen and nitrogen positively affects the capacity and cycling performance of the electrodes.This led to increased d-spacing in the graphitic layer,a strong interaction with the solid electrolyte interphase layer,and improved ion transportation.Finally,the non-activated biochar was successfully coupled with a sulfur cathode to fabricate lithium-metal-free sulfur batteries,delivering a specific energy density of~600 Wh kg^(−1).
基金the financial sponsorship from the National Natural Science Foundation of China(Grant Nos.U20A20320,52308342)the Fundamental Research Funds for the Central Universities(Grant No.RF1028623071).
文摘Field monitoring was conducted to investigate and quantify the long-term effects of peanut shell biochar on soil-grass interaction over three years.Three 10 m5 m grassed plots were constructed in completely decomposed granitic soil.Two of them were amended,respectively,with 5%and 10%biochar contents(m^(3)/m^(3))for grass growth,while the third was without biochar amendment.During the threeyear monitoring,plant characteristics,saturated water permeability(k_(s))of grassed soil and soil suction were measured.The monitored results show that the grass leaf area index(LAI)and root length density(RLD)with biochar amendment were improved by 38%and 200%,respectively.In the grassed plot without biochar,a threshold RLD existed with a value of 1.7 cm/cm^(3),beyond which k_(s) raised pronouncedly.The threshold RLD increased by 52%when biochar content increased from 0%to 10%.This implies that biochar may restrict the increase in k_(s) of grassed soil due to the rise in the threshold RLD.The presence of biochar and grass can retain over 100%higher suction after heavy rainfalls,while 54%lower peak suction under evapotranspiration(ET)compared with the non-amended plot.Biochar can alleviate the negative effects on hydraulic properties caused by plant growth and reduce ET-induced excessive water loss.A 5%peanut shell biochar content is recommended for the long-term management of vegetated earthen infrastructures.
基金supported by the earmarked fund for National Natural Science Foundation of China(Grant No.31801816)National Modern Agro-industry Technology Research System(Grant No.CARS-27)Taishan scholar funded project(Grant No.TS20190923)。
文摘Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether biochar could promote plant growth and alleviate apple replant disease by reducing the growth of harmful soil microorganisms,changing soil microbial community structure and improving the soil environment.This experiment included five treatments:apple replant soil(CK),methyl bromide fumigation apple replant soil(FM),replant soil with biochar addition(2%),replant soil with F.oxysporum spore solution(8×10^(7)spores·mL^(-1)),and replant soil with biochar and F.oxysporum spore solution addition.Seedling biomass,the activity of antioxidant enzymes in the leaves and roots,and soil environmental variables were measured.Microbial community composition and community structure were analyzed using 16SrDNA and ITS2 gene sequencing.Biochar significantly reduced the abundance of F.oxysporum and increased soil microbial diversity and richness.Biochar also increased the soil enzyme activities(urease,invertase,neutral phosphatase,and catalase),the biomass(plant height,fresh weight,dry weight)and the activity of antioxidant enzymes(superoxide dismutase,peroxidase,and catalase).The root indexes of apple seedlings was also increased in replant soil by biochar.In sum,biochar promoted the growth of plants,improved the replant soil environment,and alleviated apple replant disease.
文摘In tropical environments, most soybean growth studies have utilized rice husk biochar (RHB) in soil, even though it is low in nitrogen, potassium, and phosphorous. This may not give short-term agronomic performance relative to enriched biochar. Moreover, the impact of inoculating soybean seeds with atmospheric nitrogen-fixing bacterium Bradyrhizobium japonicum on nodulation and grain yield has produced inconclusive findings in the literature. This research therefore aims to assess the effect of poultry manure (PM), poultry manure biochar (PMB) and RHB alone and in combinations on grain yield, dry shoot and root biomass of soybeans in the semi-deciduous agro-ecological zone. In addition, the effect of B. japonicum inoculated and non-inoculated soybean seeds on nodulation and grain yield was also investigated. The treatments followed a split plot design studying inoculation and non-inoculation, soil amendments (eight), and control subplot factors, respectively. The results show that the amendment of a ferric acrisol with 4 Mg∙ha−1 PM, 10 Mg∙ha−1 RHB + 2 Mg∙ha−1 PM, and 5 Mg∙ha−1 RHB + 4 Mg∙ha−1 PMB with B. japonicum inoculated seed produced significantly greater grain yield (p = 0.05). PM treatment had a significant (p B. japonicum-inoculated soybean seeds significantly (p = 0.014) increased soybean nodulation. This study suggests that RHB combined with PM or PMB provides a beneficial source of N, P, and K, resulting in improved soybean yield and nodulation in a tropical ferric acrisol.
文摘This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.
基金Foundation of China(Grant No.52261160382)for financial support.
文摘Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water contents in the covers to maintain vegetation growth in semiarid conditions.In this study,biochar‐amended soil was combined with subsurface drip irrigation,and the water preservation characteristics of this treatment were investigated through a series of one‐dimensional soil column tests.To ascertain the best treatment method specific to semiarid climatic conditions,the test soil was amended with 0%,1%,3%,and 5%biochar.Automatic irrigation devices equipped with soil moisture sensors were used to control the subsurface water content with the aim of enhancing vegetation growth.Each soil column test lasted 150 h,during which the volumetric water contents and soil suction data were recorded.The experimental results reveal that the soil specimen amended with 3%biochar is the most water‐saving regardless of the time cost.Soil with a higher biochar content(e.g.,5%)consumes a more significant amount of water due to the enhancement of the water‐holding capacity.Based on the experimental results,it can be concluded that the appropriate ratio can be determined within 1%–3%,which can reduce not only the amount of irrigated/used water but also the time cost.Such technology can be explored for water content regulation in green infrastructure and the development of barriers for protecting the environment around deep underground waste containment.
基金supported by National Natural Science Foundation of China(51876080)the Program for Taishan Scholars of Shandong Province Government,the Agricultural Innovation Program of Shandong Province(SD2019NJ015)+1 种基金the Research and Development program of Shandong Basan Graphite New Material Plant,National Natural Science Foundation of China(52076097)Key projects for inter-governmental cooperation in international science,technology and innovation(2018YFE0127500).
文摘Biochar is a reactive carrier as it may be partially gasified with steam in steam reforming,which could influence the formation of reaction intermediates and modify catalytic behaviors.Herein,the Ni/biochar as well as two comparative catalysts,Ni/Al_(2)O_(3) and Ni/SiO_(2),with low nickel loading(2%(mass))was conducted to probe involvement of the varied carriers in the steam reforming.The results indicated that the Ni/biochar performed excellent catalytic activity than Ni/SiO_(2) and Ni/Al_(2)O_(3),as the biochar carrier facilitated quick conversion of the -OH from dissociation of steam to gasify the oxygen-rich carbonaceous intermediates like C=O and C-O-C,resulting in low coverage while high exposure of nickel species for maintaining the superior catalytic performance.In converse,strong adsorption of aliphatic intermediates over Ni/Al_(2)O_(3) and Ni/SiO_(2) induced serious coking with polymeric coke as the main type(21.5%and 32.1%,respectively),which was significantly higher than that over Ni/biochar(3.9%).The coke over Ni/biochar was mainly aromatic or catalytic type with nanotube morphology and high crystallinity.The high resistivity of Ni/biochar towards coking was due to the balance between formation of coke and gasification of coke and partially biochar with steam,which created developed mesopores in spent Ni/biochar while the coke blocked pores in Ni/Al_(2)O_(3) and Ni/SiO_(2) catalysts.
基金This work was supported by the Creative Groups of Natural Science Foundation of Hubei Province(Grant No.2021CFA030).Onyekwena Chikezie Chimere is an awardee for the ANSO Scholarship 2020-PhD.Ishrat Hameed Alvi is a recipient of the 2021 PhD ANSO Scholarship.
文摘Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materials(SCMs)to stabilize DMS under ambient and carbon dioxide(CO_(2))curing conditions.Several proprietary experimental tests were conducted to investigate the stabilized DMS.Furthermore,the carbonation-induced mineralogical,thermal,and microstructural properties change of the samples were explored.The findings show that the compressive strength of the stabilized DMS fulfilled the 7-d requirement(0.7-2.1 MPa)for pavement and building foundations.Replacing rMgO with SCMs such as biochar or ground granulated blast-furnace slag(GGBS)altered the engineering properties and particle packing of the stabilized soils,thus influencing their performances.Biochar increased the porosity of the samples,facilitating higher CO_(2) uptake and improved ductility,while GGBS decreased porosity and increased the dry density of the samples,resulting in higher strength.The addition of SCMs also enhanced the water retention capacity and modified the pH of the samples.Microstructural analysis revealed that the hydrated magnesium carbonates precipitated in the carbonated samples provided better cementation effects than brucite formed during rMgO hydration.Moreover,incorporating SCMs reduced the overall global warming potential and energy demand of the rMgO-based systems.The biochar mixes demonstrated lower toxicity and energy consumption.Ultimately,the rMgO and biochar blend can serve as an environmentally friendly additive for soft soil stabilization and permanent fixation of significant amounts of CO_(2) in soils through mineral carbonation,potentially reducing environmental pollution while meeting urbanization needs.
基金Supported by the National Natural Science Fund(41301316,32172072)the Project of Nature Scientific Foundation of Heilongjiang Province(LH2021C025)Open Project of Key Laboratory for Germplasm Innovation and Physiological Ecology of Food Crops in Cold Regions of the Ministry of Education(CXSTOP2021008)。
文摘Long term tillage in mollisol of Northeast China has led to an inhomogeneous distribution of soil organic matter content.Biochar,a carbon material,changes the soil carbon pool and physical-chemical characteristics after adding to the soil.However,the mechanism remains unclear for the relation between the soil organic matter level and biochar amount.So,the soil physical and chemical properties and soybean growth in a two-year pot experiment were detected at three levels of soil organic matter and three biochar additions(0,1%and 10%).The difference was found in two biochar application rates.The 1%biochar addition had no positive effect on the soil chemical properties based the two-year experiment.However,10%biochar application significantly increased the soil water content(8.0%-39.7%),the total porosity(9.7%-21.3%),pH(0.26-0.84 unit),organic matter content(89.0%-261.2%),and the available potassium content(29.0%-109.1%).The biomass of soybean increased by 19.4%-78.1%after biochar addition,yet,the soil bulk density reduced at the range of 12.6%-26.0%by 10%biochar addition.Only the 100-grain weight was correlated to the interaction of biochar and the native soil organic matter.All the indicators showed that the interaction between biochar and soil organic matter level was weak in mollisol.The effects of biochar on the physical-chemical properties relied on its amount.When biochar is applied to the soil,the amount of biochar should be considered rather than the native soil organic matter level.
文摘An in-vitro experiment was conducted to assess the interaction between biochar and algae on a problem soil. Experiments were performed with and without algae to observe the effectiveness of algae for overcoming the challenges posed by problem soils. At the end of incubation periods, the adsorption and desorption of phosphorus (P) on a problem soil vis-á-vis algal inoculation were determined. Our results showed that different types of biochars adsorbed different amounts of P suggesting that the source of biochar played a crucial role in determining its behavior towards P. Tannery waste biochar significantly adsorbed 147% and 35% more P compared to that of the chicken litter and orange peel biochars respectively. Significant reductions in adsorption were observed when the biochar was used in combination with the algae which could be due to the beneficial effects of algae leading to the amelioration of the problem soil. Adsorption was reduced to 34%, 24% and 20% for the orange peel biochar + algae, chicken litter biochar + algae and tannery waste biochar + algae, respectively compared to the corresponding biochars present as a single solid. Phosphorus (P) desorption was also reduced significantly in presence of algal inoculation. Overall our findings suggest that the application of algae along with biochar in the problem soil could reduce the adsorption of P which would influence the availability of P.
基金Supported by the National Natural Science Foundation of China Project(31770582)。
文摘Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between physical properties and LOC fractions. A field positioning experiment was performed in Mollisols region of Northeast China to evaluate the influence of maize stalk biochar on the spatial distribution and temporal changes of physical properties and LOC fractions. Maize stalk biochar treatments included C1(1.5 kg·hm^(-2)), C2(3 kg·hm^(-2)), C3(15 kg·hm^(-2)), C4(30 kg·hm^(-2)), and CK(0). The results showed that maize stalk biochar increased soil water contents(SWC) and soil porosity(SP), but reduced bulk density(BD). Maize stalk biochar reduced dissolved organic carbon(DOC) contents in the 0-20 cm soil layer, ranging from 0.25 g·kg^(-1) to 0.31 g·kg^(-1) in harvest period, while increased in the 20-40 cm soil layer. In addition, the application of biochar had a significant impact on the spatial distribution and temporal change of SWC, BD, SP, DOC, hot-water extractable carbon(HWC), acid hydrolyzed organic carbon(AHC Ⅰ, Ⅱ), and readily oxidized organic carbon(ROC). High amounts of maize stalk biochar up-regulated the contents of soil organic carbon SOC, HWC, AHC Ⅰ, AHC Ⅱ, and ROC. In addition, SWC and SP were the key physical factors to affect LOC fractions. In conclusions, maize stalk biochar could improve physical properties, and then influence LOC fractions, and maize stalk biochar could be used as an organic amendment for restoring degraded soils governed by their rates of addition.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52276180)the Natural Science Foundation of Heilongjiang Province(Grant No.YQ2022E026).
文摘Biomass-H_(2)O gasification is a complex thermochemical reaction,including three processes of volatile removal:homogeneous/heterogeneous reforming,biochar gasification and etching.The rate-determining step is biochar-H_(2)O gasification and etching so the DFT is carried out to see the catalytic role of different metal elements(K/Ni)in the zigzag biochar model.The calculation results show that the gasification of biochar-H_(2)O needs to go through four processes:dissociative adsorption of water,hydrogen transfer(hydrogen desorption,hydrogen atom transfer),carbon dissolution and CO desorption.The energy barrier indicated that the most significant step in reducing the activation energy of K is reflected in the hydrogen transfer step,which is reduced from 374.14 kJ/mol to 152.41 kJ/mol;the catalytic effect of Ni is mainly reflected in the carbon dissolution step,which is reduced from 122.34 kJ/mol to 84.8 kJ/mol.The existence of K causes the edge to have a stronger attraction to H and does not destroy theπbonds of biochar molecules.The destruction ofπbonds is mainly due to the role of H free radicals,while the destruction ofπbonds will lead to easier C-C bond rupture.Ni shows a strong attraction to O in OH,which forms strong Ni-O chemical bonds.Ni can also destroy the aromatic structure directly,making the gasification easier to happen.This study explored the catalytic mechanism of K/Ni on the biochar-H_(2)O gasification at the molecular level and looked forward to the potential synergy of K/Ni,laying a foundation for experimental research and catalyst design.
文摘In this study, the adsorption effect of β-cyclodextrin modified biochar (BC) on phenanthrene (PHE) in contaminated soil was investigated, aiming to provide an efficient and environmentally friendly remediation strategy for Polycyclic Aromatic Hydrocarbons (PAHs) contaminated soil. Through kinetic and isotherm analysis, β-CDBC-CA showed excellent phenanthrene adsorption performance, and the adsorption effect increased with the increase of time and was affected by temperature. The results show that β-CDBC-CA can not only effectively adsorb phenanthrene in soil, but also serve as a surfactant to help desorption phenanthrene adsorbed by soil organic matter and improve the efficiency of microbial degradation. The experimental data showed that the Elovich model could describe the adsorption behavior of β-CDBC-CA on phenanthrene well, while Langmuir and Freundlich models performed better in fitting parameters, revealing the adsorption mechanism of phenanthrene in contaminated soil by β-cyclodextrin-modified biochar. In addition, temperature has a significant effect on the adsorption capacity of β-CDBC-CA, and its application in soil remediation can be optimized by adjusting temperature. This study not only provides new materials and technical means for soil remediation but also provides important data support for an in-depth understanding of the environmental behavior of PAHs. By citing relevant research results, this study further improves the control and understanding of environmental risks of PAHs, which is of great significance for the protection of ecological environment and human health.
文摘In this paper, biochar (BC) was used as raw material, activated by deionizing aqueous solution, NaCl solution, CA solution and HCl solution respectively. Epichlorohydrin (EPI) was used as crosslinking agent, and β-cyclodextrin (β-CD) was used to modify biochar (BC). The prepared modified biochar materials were labeled with β-CDBC, β-CDBC-Na, β-CDBC-CA and β-CDBC-H, respectively. The infrared spectrum, X-ray diffractometer, scanning electron microscope and specific surface area of the four modified materials were tested. The results showed that the C-O stretching vibration peak at 1020 cm<sup>−</sup><sup>1</sup> of the modified materials was slightly offset compared with that of biochar. The characteristic absorption peaks of XRD pattern decrease obviously at 2θ = 26.7˚ and 29.5˚. It can be obviously observed on the electron microscope image that the surface is loaded or formed clathrates, and BET data and graphs also show that the specific surface area of the modified biochar is larger. Therefore, β-cyclodextrin successfully modified biochar and formed clathrates on the surface of biochar or was loaded in the pore structure of biochar, especially β-CDBC-CA achieved better modification effect. Because biochar and β-cyclodextrin raw materials are cheap, easy to prepare and green, and less prone to secondary pollution, it has a good advantage in environmental governance.
文摘Two major problems facing agriculture at present are soil pollution and the disposal of solid wastes generated during plant growth. The method of preparing biochar from solid wastes produced by plants is a means of maximizing the use of resources to combat the problem of soil pollution. In this study, we did not choose straw in the traditional sense but the waste branches from grape pruning, which has higher lignin cellulose, as the raw material. The biochar derived from grape branches pyrolyzed at 300˚C for two hours was utilized as a raw material to prepare modified biochar with varying concentrations of phosphoric acid. The adsorption performance and mechanism of Cd<sup>2 </sup> were explored through experiments involving different concentrations, addition amounts, reaction times, kinetic analyses, and isothermal adsorption tests. The findings indicated that the optimal adsorption of Cd<sup>2 </sup> occurred with a 20% phosphoric acid concentration, achieving the highest adsorption rate of 84.62%. At a dosage of 10 g/L, the maximum adsorption capacity reached 7.02 mg/g. The adsorption kinetics and isothermal adsorption of Cd<sup>2 </sup> on biochar modified with 0.2% phosphoric acid (0.2 PB) closely followed the pseudo-first-order kinetics model (R<sup>2</sup> > 0.98) and the Freundlich model (R<sup>2</sup> > 0.97), respectively. This suggests that the adsorption process involves both physical and chemical mechanisms. SEM and FTIR analyses revealed that phosphoric acid modification primarily increased the biochar’s specific surface area and enhanced certain original functional groups. The adsorption process predominantly involved rapid ion diffusion and chemical adsorption, as confirmed by kinetic analysis and isothermal adsorption model analysis. In summary, the adsorption efficiency of 0.2 PB significantly improved, showing potential and feasibility for heavy metal remediation in soil. This supports the environmentally friendly concept of “treating waste with waste”.
文摘As ecosystem degradation becomes more widespread, there is a growing need for efficient and effective forest restoration methods. Direct seeding is one such method that can be used to cover a relatively large area, particularly places with difficult-to-access terrain. One major obstacle hampering successful restoration via direct seeding is seed predation, as seeds are damaged or eaten. We tested the effectiveness of encrusting six species of native seeds with biochar-based coating in reducing the seeds’ chances of being predated on degraded hillsides and landslide scars in Hong Kong. The six seeded species are native trees and shrubs, including both late-successional and pioneer species that are present in forests and shrublands. Our results show that biochar-based seed coats were able to significantly reduce overall seed predation by 5.77% (SE = 1.41, p < 0.05). Additionally, we found varied effectiveness of the biochar-based seed coats across species and seed morphology. Of the six species that were included, four of them had significantly reduced seed predation after encrusting with biochar-based seed coats, while two other species were not significantly affected by the biochar-based seed coats. When we investigated seed predation against seed morphology, we found that while the species with larger seeds were more likely to be predated when sown without any biochar-based seed coat, the effectiveness of the biochar-based seed coat to reduce predation also increased with larger seeds. Our results suggest that encrusting seeds with biochar-based seed coats is an effective means of reducing seed predation.
文摘The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.
文摘Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining, industrial activities, improper usage of fertilizers and pesticides, and indiscriminate open waste disposal bring about an increase in the presence of heavy metals in the environment. In the Keffi Metropolis, different elements lead to land contamination which debilitates soil quality, plant survival, human well-being, and the environment as a result of extensive dispersion or quantity of heavy metals in the soil and water. In recent years, biochar has emerged as a promising soil amendment for mitigating heavy metal pollution due to its unique physicochemical properties. This paper provides the effects of softwood pellet biochar on the retention of heavy metals in contaminated soils. A microcosm experiment was carried out to investigate the effects of biochar on the retention of heavy metals in contaminated soils. This research aimed to give an overview of the effects of softwood biochar at different temperatures (550˚C and 700˚C) on the retention of heavy metals and metalloids released from the soil during water inundation. The results show that the addition of organic matter (grass chippings) minimizes heavy metal mobilization. Also, biochar at high temperatures is more effective than those at low temperatures. The expected outcome of the research analysis includes providing insights into the role of biochar in retaining heavy metal contamination and further understanding the use of biochar as a sorbent for the management of contaminated soil.