It is important to study the dilatancy property of water-saturated rock for understanding the engineering behavior of loaded rock mass. This study carried out the uniaxial and triaxial compressive experiments on the w...It is important to study the dilatancy property of water-saturated rock for understanding the engineering behavior of loaded rock mass. This study carried out the uniaxial and triaxial compressive experiments on the water-saturated red sandstone, analyzed the influences of confining pressure and pore pressure on dilatancy property of water-saturated rock, and discussed the reasonable basis of the stress of dilatancy onset as a strength design parameter of rock engineering, finally established the prediction model of the stress of dilatancy onset under the impacts of confining pressure and pore pressure. The results show that the strength parameters(the stress of dilatancy onset and peak strength) and deformation parameters(axial strain and circumferential strain) of water-saturated sandstone increase with the confining pressure, and the relations can be fitted with a positive linear function. The cohesion and internal friction angle obtained from the stress of dilatancy onset decrease by 11.57% and 7.33%, respectively, when compared with those obtained from the peak strength. The strength parameters and deformation parameters of water-saturated sandstone decrease basically with the increase of pore pressure, in which the relations between strength parameters or axial strain and pore pressure can be fitted with a negative linear function. However, the relation between the peak circumferential strain and the pore pressure should be characterized by a negative exponential function, and the circumferential strain at dilatancy onset isn't affected by the pore pressure.展开更多
This paper describes a systematic study on the fundamental features of seismic soil pressure on underground tunnels, in terms of its magnitude and distribution, and further identifi es the dominant factors that signif...This paper describes a systematic study on the fundamental features of seismic soil pressure on underground tunnels, in terms of its magnitude and distribution, and further identifi es the dominant factors that signifi cantly infl uence the seismic soil pressure. A tunnel embedded in water-saturated poroelastic half-space is considered, with a large variety of model and excitation parameters. The primary features of both the total soil pressure and the pore pressure are investigated. Taking a circular tunnel as an example, the results are presented using a fi nite element-indirect boundary element(FE-IBE) method, which can account for dynamic soil-tunnel interaction and solid frame-pore water coupling. The effects of tunnel stiffness, tunnel buried depth and input motions on the seismic soil pressure and pore pressure are also examined. It is shown that the most crucial factors that dominate the magnitude and distribution of the soil pressure are the tunnel stiffness and dynamic soil-tunnel interaction. Moreover, the solid frame-pore water coupling has a prominent infl uence on the magnitude of the pore pressure. The fi ndings are benefi cial to obtain insight into the seismic soil pressure on underground tunnels, thus facilitating more accurate estimation of the seismic soil pressure.展开更多
Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately ...Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately threatening the stability of underground structures. In order to explore the mechanical properties of rocks under H-M coupling, the corresponding damage constitutive(D-C) model has become the focus of attention. Considering the inadequacy of the current research on rock strength parameters,energy evolution characteristics and D-C model under H-M coupling, the mechanical properties of typical sandstone samples are discussed based on laboratory tests. The results show that the variation of characteristic stresses of sandstone under H-M coupling conforms to the normalized attenuation equation and Mohr-Coulomb(M-C) criterion. The P-W pressure mechanism of sandstone exhibits a dynamic change from softening effect to H-M fracturing effect. The closure stress is mainly provided by cohesive strength, while the initiation stress, damage stress, and peak stress are jointly dominated by cohesive strength and friction strength. In addition, residual stress is attributed to the friction strength formed by the bite of the fracture surface. Subsequently, the energy evolution characteristics of sandstone under H-M coupling were studied, and it was found that P-W pressure weakened the energy storage capacity and energy dissipation capacity of sandstone, and H-M fracturing was an important factor in reducing its energy storage efficiency. Finally, combined with energy dissipation theory and statistical damage theory, two types of D-C models considering P-W pressure are proposed accordingly, and the model parameters can be determined by four methods. The application results indicate that the proposed and modified D-C models have high reliability, and can characterize the mechanical behavior of sandstone under H-M coupling, overcome the inconvenience of existing D-C models due to excessive mechanical parameters,and can be applied to the full-range stress–strain process. The results are conducive to revealing the deformation and damage mechanisms of rocks under H-M coupling, and can provide theoretical guidance for related engineering problems.展开更多
This paper outlines the results of experimental study of the dynamic rock failure based on the comparison of dry and saturated limestone samples obtained during the dynamic compression and split tests. The tests were ...This paper outlines the results of experimental study of the dynamic rock failure based on the comparison of dry and saturated limestone samples obtained during the dynamic compression and split tests. The tests were performed using the Kolsky method and its modifications for dynamic splitting. The mechanical data(e.g. strength, time and energy characteristics) of this material at high strain rates are obtained. It is shown that these characteristics are sensitive to the strain rate. A unified interpretation of these rate effects, based on the structuraletemporal approach, is hereby presented. It is demonstrated that the temporal dependence of the dynamic compressive and split tensile strengths of dry and saturated limestone samples can be predicted by the incubation time criterion. Previously discovered possibilities to optimize(minimize) the energy input for the failure process is discussed in connection with industrial rock failure processes. It is shown that the optimal energy input value associated with critical load, which is required to initialize failure in the rock media, strongly depends on the incubation time and the impact duration. The optimal load shapes, which minimize the momentum for a single failure impact, are demonstrated. Through this investigation, a possible approach to reduce the specific energy required for rock cutting by means of high-frequency vibrations is also discussed.展开更多
Many geological engineering hazards are closely related to the dynamic mechanical properties of rock materials.However,most existing studies on the dynamic mechanical properties of rock materials were conducted on the...Many geological engineering hazards are closely related to the dynamic mechanical properties of rock materials.However,most existing studies on the dynamic mechanical properties of rock materials were conducted on the hard rocks such as sandstone,granite,limestone,and marble,whereas soft rocks,such as schist,are less studied.Therefore,in this study,a series of triaxial impact tests were conducted on dry and saturated schist by employing a modified triaxial split Hopkinson pressure bar system to reveal the coupling effects of water,strain rate,and triaxial confining pressure on the mechanical properties of schist.The results show that schist is a type of watersensitive rock and the stress-strain curve of saturated schist has apparent ductility.The effects of strain rate on dynamic strain,deformation modulus and peak stress were analyzed.The results also show that the dynamic peak stress is affected by the combined softening effect and viscous effect of water under impact loading.Finally,it was found that the failure mode of schist belongs to typical axial tensile failure under uniaxial impact tests,and shear failure is the main failure mode under triaxial impact tests.With the increase in confining pressure,the failure modes of schist change from tensile failure to shear failure.This research can provide useful parameters for geological engineering hazard prevention in mountain areas.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51404266 and 11502229)the National Program on Key Basic Research Project of China (No. 2013CB227900)
文摘It is important to study the dilatancy property of water-saturated rock for understanding the engineering behavior of loaded rock mass. This study carried out the uniaxial and triaxial compressive experiments on the water-saturated red sandstone, analyzed the influences of confining pressure and pore pressure on dilatancy property of water-saturated rock, and discussed the reasonable basis of the stress of dilatancy onset as a strength design parameter of rock engineering, finally established the prediction model of the stress of dilatancy onset under the impacts of confining pressure and pore pressure. The results show that the strength parameters(the stress of dilatancy onset and peak strength) and deformation parameters(axial strain and circumferential strain) of water-saturated sandstone increase with the confining pressure, and the relations can be fitted with a positive linear function. The cohesion and internal friction angle obtained from the stress of dilatancy onset decrease by 11.57% and 7.33%, respectively, when compared with those obtained from the peak strength. The strength parameters and deformation parameters of water-saturated sandstone decrease basically with the increase of pore pressure, in which the relations between strength parameters or axial strain and pore pressure can be fitted with a negative linear function. However, the relation between the peak circumferential strain and the pore pressure should be characterized by a negative exponential function, and the circumferential strain at dilatancy onset isn't affected by the pore pressure.
基金Supported by:National Natural Science Foundation of China under Grant No.51978462
文摘This paper describes a systematic study on the fundamental features of seismic soil pressure on underground tunnels, in terms of its magnitude and distribution, and further identifi es the dominant factors that signifi cantly infl uence the seismic soil pressure. A tunnel embedded in water-saturated poroelastic half-space is considered, with a large variety of model and excitation parameters. The primary features of both the total soil pressure and the pore pressure are investigated. Taking a circular tunnel as an example, the results are presented using a fi nite element-indirect boundary element(FE-IBE) method, which can account for dynamic soil-tunnel interaction and solid frame-pore water coupling. The effects of tunnel stiffness, tunnel buried depth and input motions on the seismic soil pressure and pore pressure are also examined. It is shown that the most crucial factors that dominate the magnitude and distribution of the soil pressure are the tunnel stiffness and dynamic soil-tunnel interaction. Moreover, the solid frame-pore water coupling has a prominent infl uence on the magnitude of the pore pressure. The fi ndings are benefi cial to obtain insight into the seismic soil pressure on underground tunnels, thus facilitating more accurate estimation of the seismic soil pressure.
基金funding support from the National Natural Science Foundation of China(Nos.52174088 and 42277154)the Independent Innovation Research Fund Graduate Free Exploration Project(No.104972024JYS0007)supported by Wuhan University of Technology.
文摘Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately threatening the stability of underground structures. In order to explore the mechanical properties of rocks under H-M coupling, the corresponding damage constitutive(D-C) model has become the focus of attention. Considering the inadequacy of the current research on rock strength parameters,energy evolution characteristics and D-C model under H-M coupling, the mechanical properties of typical sandstone samples are discussed based on laboratory tests. The results show that the variation of characteristic stresses of sandstone under H-M coupling conforms to the normalized attenuation equation and Mohr-Coulomb(M-C) criterion. The P-W pressure mechanism of sandstone exhibits a dynamic change from softening effect to H-M fracturing effect. The closure stress is mainly provided by cohesive strength, while the initiation stress, damage stress, and peak stress are jointly dominated by cohesive strength and friction strength. In addition, residual stress is attributed to the friction strength formed by the bite of the fracture surface. Subsequently, the energy evolution characteristics of sandstone under H-M coupling were studied, and it was found that P-W pressure weakened the energy storage capacity and energy dissipation capacity of sandstone, and H-M fracturing was an important factor in reducing its energy storage efficiency. Finally, combined with energy dissipation theory and statistical damage theory, two types of D-C models considering P-W pressure are proposed accordingly, and the model parameters can be determined by four methods. The application results indicate that the proposed and modified D-C models have high reliability, and can characterize the mechanical behavior of sandstone under H-M coupling, overcome the inconvenience of existing D-C models due to excessive mechanical parameters,and can be applied to the full-range stress–strain process. The results are conducive to revealing the deformation and damage mechanisms of rocks under H-M coupling, and can provide theoretical guidance for related engineering problems.
基金supported by IHC Merwede B.V. as well as by Russian Foundation for Basic Research (Grant Nos. 13-0100349 and 14-01-31510)Russian Science Foundation (“support and development”, Grant No. 14-19-01637)Saint Petersburg University (Grant No. 6.38.243.2014)
文摘This paper outlines the results of experimental study of the dynamic rock failure based on the comparison of dry and saturated limestone samples obtained during the dynamic compression and split tests. The tests were performed using the Kolsky method and its modifications for dynamic splitting. The mechanical data(e.g. strength, time and energy characteristics) of this material at high strain rates are obtained. It is shown that these characteristics are sensitive to the strain rate. A unified interpretation of these rate effects, based on the structuraletemporal approach, is hereby presented. It is demonstrated that the temporal dependence of the dynamic compressive and split tensile strengths of dry and saturated limestone samples can be predicted by the incubation time criterion. Previously discovered possibilities to optimize(minimize) the energy input for the failure process is discussed in connection with industrial rock failure processes. It is shown that the optimal energy input value associated with critical load, which is required to initialize failure in the rock media, strongly depends on the incubation time and the impact duration. The optimal load shapes, which minimize the momentum for a single failure impact, are demonstrated. Through this investigation, a possible approach to reduce the specific energy required for rock cutting by means of high-frequency vibrations is also discussed.
基金supported by the Fundamental Research Funds for the Central Universities,CHD (300102260708)the National Natural Science Foundation of China (No. 41831286)the Transportation Construction Science and Technology Program of Sichuan Province (No. 2015A1-3)。
文摘Many geological engineering hazards are closely related to the dynamic mechanical properties of rock materials.However,most existing studies on the dynamic mechanical properties of rock materials were conducted on the hard rocks such as sandstone,granite,limestone,and marble,whereas soft rocks,such as schist,are less studied.Therefore,in this study,a series of triaxial impact tests were conducted on dry and saturated schist by employing a modified triaxial split Hopkinson pressure bar system to reveal the coupling effects of water,strain rate,and triaxial confining pressure on the mechanical properties of schist.The results show that schist is a type of watersensitive rock and the stress-strain curve of saturated schist has apparent ductility.The effects of strain rate on dynamic strain,deformation modulus and peak stress were analyzed.The results also show that the dynamic peak stress is affected by the combined softening effect and viscous effect of water under impact loading.Finally,it was found that the failure mode of schist belongs to typical axial tensile failure under uniaxial impact tests,and shear failure is the main failure mode under triaxial impact tests.With the increase in confining pressure,the failure modes of schist change from tensile failure to shear failure.This research can provide useful parameters for geological engineering hazard prevention in mountain areas.