期刊文献+
共找到1,848篇文章
< 1 2 93 >
每页显示 20 50 100
The Potential Contribution of Subsurface Drip Irrigation to Water-Saving Agriculture in the Western USA 被引量:18
1
作者 T L Thompson PANG Huan-cheng LI Yu-yi 《Agricultural Sciences in China》 CSCD 2009年第7期850-854,共5页
Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurfa... Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI. 展开更多
关键词 subsurface drip irrigation (SDI) water-saving agriculture western USA
下载PDF
Spatio-temporal variation and relationship between agricultural efficiency and irrigation intensity in a semi-arid region of India
2
作者 Shibu DAS Kaushal Kumar SHARMA +2 位作者 Suranjan MAJUMDER Debabrata DAS Indrajit Roy CHOWDHURY 《Regional Sustainability》 2024年第2期123-139,共17页
A surging population in Karnataka State,a semi-arid region in India,poses a threat to both food security and livelihood sustainability,necessitating a concentrated effort to bolster agricultural efficiency and achieve... A surging population in Karnataka State,a semi-arid region in India,poses a threat to both food security and livelihood sustainability,necessitating a concentrated effort to bolster agricultural efficiency and achieve United Naton’s Sustainable Development Goal 2(zero hunger).Therefore,in order to address the pressing issue of food scarcity in Karnataka,this study meticulously examined the spatio-temporal variation of agricultural efficiency and irrigation intensity in Karnataka,uncovering its significant dependence of agricultural efficiency on irrigation intensity.Specifically,this study used a one-way analysis of variance(ANOVA)to ascertain significant differences in the means of agricultural efficiency and irrigation intensity during 2004-2005 and 2018-2019.This study showed that the maximum improvement in agricultural efficiency index was recorded in Belgaum(40.24),Gulbarga(24.77),and Yadgir districts(22.92)between 2004-2005 and 2018-2019,which indicated the progressing trend and better scope for agriculture extension.On the contrary,some districts expressed threat(a decline of above 20.00 of agricultural efficiency index)and needed special care for the improvement of agricultural efficiency in four northern districts(Bagalkot,Bidar,Raichur,and Bijapur),three southern districts(Chitradurga,Chikballapur and Hassan),and two southern districts(Koppal and Gadag)in Karnataka.During 2004-2005,irrigation intensity varied from 3.19%to 56.39%,with the lowest irrigation intensity in Kodagu District and the highest irrigation intensity in Shimoga District.During 2018-2019,irrigation intensity changed from 0.77%to 72.77%,with the lowest irrigation intensity in Kodagu District and the highest in Dakshin Kannad District.Moreover,the research scrutinized the complex relationship between agricultural efficiency and irrigation intensity,with the correlation coefficient increased from 0.162 during 2004-2005 to 0.255 during 2018-2019.It implies that in both periods,a low positive correlation existed between these two variables.Over time,several factors(high-yield seeds and chemical fertilizers)other than irrigation intensity gradually became essential for agricultural efficiency.This research offers a wealth of valuable insights for regional planners and policy-makers contending with comparable challenges in various regions of India and other developing countries. 展开更多
关键词 agricultural efficiency irrigation intensity One-way analysis of variance(ANOVA) Food security KARNATAKA
下载PDF
Irrigated Agriculture Facing the Challenge of Climate Change: Adaptation Strategies for Farmers in the Irrigated Perimeters of Môle Saint-Nicolas, Haiti
3
作者 Frantz Mial Jean-François Bissonnette +1 位作者 Marc-André Bourgault Meryem Qacami 《American Journal of Climate Change》 2024年第3期477-498,共22页
Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adapta... Môle Saint-Nicolas, like all other communes in the Republic of Haiti, faces increasing climate variability, impacting agricultural production and water resources. Consequently, there is a pressing need for adaptation to these climatic changes. This research aims to showcase the adaptation strategies deployed by farmers to cope with the increasing climate variability. Surveys were conducted through group and individual discussions with a randomly selected cohort of 150 farmers. Two types of analysis were performed: quantitative and qualitative. The quantitative data analysis was conducted using Statistical Package for the Social Sciences (SPSS) software. The findings reveal that farmers have perceived changes in rainfall patterns, temperature, wind, and their environment. These changes manifest as irregular rainfall, higher temperatures, prolonged drought periods, violent winds accompanied by rain, premature cessation of rains, and reduced flow from water sources. In response, the most common adaptation strategies adopted include selecting new cultivars, early-maturing varieties, crop rotation and diversification, canal dredging, new soil preparation methods, upstream water source protection, and micro-watershed management. The significance of this research lies in its contribution to enhancing farmers’ adaptive capacities by alerting stakeholders in the irrigated perimeters about the consequences of climate change, thereby incorporating the real needs of farmers in future projects. 展开更多
关键词 Climate Change Perception Adaptation agriculture irrigated Perimeter
下载PDF
Characteristics and Functions of Cooperative Economic Organizations for Water-saving Irrigation in Agricultural Development in Arid Areas 被引量:4
4
作者 吴开波 朱美玲 +1 位作者 董新光 李金 《Agricultural Science & Technology》 CAS 2011年第12期1979-1982,共4页
Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irr... Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irrigation technologies.Currently,there are few researches on this cooperative economic organization.In this study,connotations of cooperative economic organizations for water-saving irrigation are specifically defined,and the characteristics and functions of this cooperative economic organization are analyzed.Based on that,several suggestions are proposed on the continuous development of cooperative economic organizations for water-saving irrigation. 展开更多
关键词 Cooperative economic organizations water-saving irrigation CHARACTERISTICS FUNCTIONS
下载PDF
Modeling of Sensor Enabled IrrigationManagement for Intelligent Agriculture Using Hybrid Deep Belief Network
5
作者 Saud Yonbawi Sultan Alahmari +5 位作者 B.R.S.S.Raju Chukka Hari Govinda Rao Mohamad Khairi Ishak Hend Khalid Alkahtani JoséVarela-Aldás Samih M.Mostafa 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2319-2335,共17页
Artificial intelligence(AI)technologies and sensors have recently received significant interest in intellectual agriculture.Accelerating the application of AI technologies and agriculture sensors in intellectual agric... Artificial intelligence(AI)technologies and sensors have recently received significant interest in intellectual agriculture.Accelerating the application of AI technologies and agriculture sensors in intellectual agriculture is urgently required for the growth of modern agriculture and will help promote smart agriculture.Automatic irrigation scheduling systems were highly required in the agricultural field due to their capability to manage and save water deficit irrigation techniques.Automatic learning systems devise an alternative to conventional irrigation management through the automatic elaboration of predictions related to the learning of an agronomist.With this motivation,this study develops a modified black widow optimization with a deep belief network-based smart irrigation system(MBWODBN-SIS)for intelligent agriculture.The MBWODBN-SIS algorithm primarily enables the Internet of Things(IoT)based sensors to collect data forwarded to the cloud server for examination purposes.Besides,the MBWODBN-SIS technique applies the deep belief network(DBN)model for different types of irrigation classification:average,high needed,highly not needed,and not needed.The MBWO algorithm is used for the hyperparameter tuning process.A wideranging experiment was conducted,and the comparison study stated the enhanced outcomes of the MBWODBN-SIS approach to other DL models with maximum accuracy of 95.73%. 展开更多
关键词 agriculture smart farming hyperparameter tuning artificial intelligence irrigation management SENSORS deep learning
下载PDF
Augmented IoT Model for Smart Agriculture and Farm Irrigation Water Conservation
6
作者 Makasda Solomon Dickson Constance Izuchukwu Amannah 《International Journal of Intelligence Science》 2023年第4期131-163,共33页
In Northern Nigeria, irrigation systems are operated manually. Agriculture has over the years been practiced primitively by farmers, especially in sub-Saharan Africa. This is due to the absence of intelligent technolo... In Northern Nigeria, irrigation systems are operated manually. Agriculture has over the years been practiced primitively by farmers, especially in sub-Saharan Africa. This is due to the absence of intelligent technological know-how where its practice could be leveraged upon. Agricultural practice is constrained by some major challenges ranging from traditional way of farming, understating of concepts, practices, policy, environmental and financial factors. The aim of this study was to optimize an IoT-based model for smart agriculture and irrigation water management. The objectives of the study were to: design, implement, test and evaluate the performance of the optimized IoT-based model for smart agriculture and irrigation water management. The method used in the study was the prototyping model. The system was designed using balsamiq application tools. The system has a login page, dashboard, system USE-CASE diagrams, actuators page, sensor page and application interface design. Justinmind tool was used to show the flow of information in the system, which included data input and output, data stores and all the sub-processes the data moves through. The Optimized IoT model was implemented using four core platforms namely, ReactJS Frontend Application development platform, Amazon web services IoT Core backend, Arduino Development platform for developing sensor nodes and Python programming language for the actuator node based on Raspberry Pi board. When compared with the existing system, the results show that the optimized system is better than the existing system in accuracy of measurement, irrigation water management, operation node, platform access, real-time video, user friendly and efficiency. The study successfully optimized an IoT-based model for smart agriculture and irrigation water management. The study introduced the modern way of irrigation farming in the 21<sup>st</sup> century against the traditional or primitive way of irrigation farming that involved intensive human participation. 展开更多
关键词 irrigation Systems Water Management Smart agriculture MODEL Optimization
下载PDF
Problems and Development Countermeasures of Agricultural Water-Saving Irrigation
7
作者 Zhang Dan 《Meteorological and Environmental Research》 CAS 2018年第3期101-104,108,共5页
Agriculture is the biggest water user in China,and the development of agricultural water-saving has great significance to the national economy and social development. In this paper,the present situation of water used ... Agriculture is the biggest water user in China,and the development of agricultural water-saving has great significance to the national economy and social development. In this paper,the present situation of water used in agriculture irrigation and water-saving potential were analyzed,and the " bottleneck" and main problems existing in water-saving irrigation in China were discussed. From the aspects of engineering investment channels,agricultural water-saving policies and management system,reform of agricultural water price and water right transfer,improvement of farmers' water-saving consciousness,and promotion of rural land transfer,suggestions were proposed for the development of China's agricultural water-saving in future,which will provide a technical support for the sustainable use of agricultural water resources in China. 展开更多
关键词 agricultural water-saving water-saving potential agricultural water rights
下载PDF
Application of Automatic Water-saving Irrigation System in Roof Gardens 被引量:1
8
作者 周炼 张美 《Journal of Landscape Research》 2009年第4期75-79,共5页
Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-sa... Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-saving irrigation system,aiming to solve the photosynthetic noon break phenomenon of plants and relieve the stress from high temperature. 展开更多
关键词 AUTOMATIC irrigation water-saving irrigation ROOF GARDEN
下载PDF
Design and Construction of Rainwater Harvesting and Water-saving Irrigation System of Toona sinensis on Mountain Slopes 被引量:1
9
作者 尹庆珍 谷成铜 +1 位作者 张立永 谷明月 《Agricultural Science & Technology》 CAS 2017年第11期2163-2167,2178,共6页
In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six ... In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six greenhouses was calculated according to annual average precipitation 542.2 mm, up to 1 095.7 m^3. The upper natural slopes of cultivated land were as rainwater harvesting areas, and total annual rainwater harvesting amount was 49 242 m^3 on the mountain slopes with an area of 73.37 hm^2, while total water storage amount was 39 394 m^3 in theory, so it could meet water use for the irrigation of 26.28 hm^2 of T. sinensis land. To be convenient for rainwater harvesting, irrigation and supplying water to the water-saving cellars, one pert-cut and part-fill reservoir (which was 470 m^3 in volume) was built on the mountain slopes at the right rear of the greenhouses, and their altitude difference was 50 m. The reservoir was sealed and was built with reinforced concrete. Water-saving cellars were distributed in front and the middle and at the back of two rows of greenhouses, and they were connected with each other. The reservoir could supply water to the water-saving cellars and also collect water by mountain slopes, from the lower water-saving cellars or deep wells. Two rainwater hervesting ditches that were 1 650 m in length were at the lower edge of arable land in the upper reaches of slopes to intercept rainfall runoff and make it flow into channels and then the sedimentation tanks. The total annual rainwater harvesting amount of the reservoir and water-saving cellars was 1 222.5 m^3. 展开更多
关键词 Toona sinensis in mountain slopes Rainwater harvesting and water-saving irrigation system Design and construction
下载PDF
Irrigation and nitrogen fertiliser optimisation in protected vegetable fields of northern China:Achieving environmental and agronomic sustainability
10
作者 Bingqian Fan Yitao Zhang +8 位作者 Owen Fenton Karen Daly Jungai Li Hongyuan Wang Limei Zhai Xiaosheng Luo Qiuliang Lei Shuxia Wu Hongbin Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1022-1033,共12页
Globally,sub-optimal use of nitrogen (N) fertiliser and elevated N irrigation groundwater have led to high leached nitrate (NO_(3)^(–)) losses from protected vegetable field systems.Optimising fertiliser and irrigati... Globally,sub-optimal use of nitrogen (N) fertiliser and elevated N irrigation groundwater have led to high leached nitrate (NO_(3)^(–)) losses from protected vegetable field systems.Optimising fertiliser and irrigation management in different soil types is crucial to reduce future N loads from such systems.The present 4-year study examined leached N loads from lysimeter monitoring arrays set up across 18 protected vegetable system sites encompassing the dominant soil types of northern China.The treatments applied at each field site were:1) a high N and high irrigation input treatment (HNHI);2) a low N but high irrigation input treatment (LNHI) and 3) a low N with low irrigation input treatment (LNLI).Results showed that the mean annual leached total nitrogen loads from the HNHI,LNHI and LNLI treatments were 325,294 and 257 kg N ha^(–1) in the fluvo-aquic soil,114,100 and 78 kg N ha^(–1) in the cinnamon soil and 79,68 and 57 kg N ha^(–1) in the black soil,respectively.The N dissolved in irrigation water in the fluvo-aquic soil areas was 8.26-fold higher than in the cinnamon areas.A structural equation model showed that N fertiliser inputs and leaching water amounts explained 14.7 and 81.8%of the variation of leached N loads,respectively.Correspondingly,reducing irrigation water by 21.5%decreased leached N loads by 20.9%,while reducing manure N and chemical N inputs by 22 and 25%decreased leached N loads by only 9.5%. This study highlights that protected vegetable fields dominated by fluvo-aquic soil need management to curtail leached N losses in northern China. 展开更多
关键词 agriculture water quality NITRATE GROUNDWATER irrigation management
下载PDF
Demography and Socio-Economic Aspects on Irrigated Smallholder Agricultural Enterprises and Their Association with the Cultivation of Maize (Zea mays L.) as a Selected Field Crop
11
作者 Tsumbedzo Jutas Mavhungu Azwihangwisi Edward Nesamvuni +2 位作者 Khathutshelo Alfred Tshikolomo Ndivhudzannyi Sylvestor Mpandeli Johan Adriaan van Niekerk 《Agricultural Sciences》 2024年第7期729-741,共13页
The purpose of this study is to correlate demography and socio-economic aspects at Irrigated Smallholder Agricultural Enterprises and their association with the Cultivation of Maize in order to determine its positive ... The purpose of this study is to correlate demography and socio-economic aspects at Irrigated Smallholder Agricultural Enterprises and their association with the Cultivation of Maize in order to determine its positive impacts at irrigated smallholders’ agricultural entrepreneurs’ household. Chi-square test was used as descriptive analysis method. The Fischer Exact tests were employed to test demography (gender, age, education, and income) in winter and summer production season of irrigated smallholder agricultural enterprises and their association with the cultivation of selected field crop (i.e. maize). The results show that gender results were not being statistically significant, as measured by the Phi measure of effect size, φ = 0.149, p = 0.011, and φ = 0.05, p = 0.392 in summer. As far as age is concern, it appears to be a statistically significant association between cultivating maize and age in winter, φ = 0.046, p = 0.730 in winter and φ = 0.172, p = 0.013. Education winter result not being statistically significant, the effect size showed a weak association, as measured by the Phi measure of effect size, φ = 0.112, p = 0.305 and φ = 0.035, p = 0.948 in summer. Income result not being statistically significant, as measured by the Phi measure of effect size, φ = 0.049, p = 0.399 and φ = 0.081, p = 0.166 in summer. In conclusion, the study shows that the development of best management practices must be based on a comprehensive analysis of the livelihoods and irrigated smallholder agricultural enterprise farming styles of participating irrigated smallholder agricultural entrepreneurs. 展开更多
关键词 MAIZE ASSOCIATION irrigated Smallholder agricultural Enterprises DEMOGRAPHY Livelihoods
下载PDF
Assessing the Water-Energy-Food-Ecosystems Nexus in Smart Irrigation: A Potato Farming Case Study in Lebanon
12
作者 Ali Karnib Hammou Laamrani Jauad El Kharraz 《Journal of Geoscience and Environment Protection》 2024年第8期80-96,共17页
This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa re... This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa region, specifically targeting potato cultivation. The study quantitatively analyzes the interaction among water, energy, and agricultural outputs at the farm scale using the WEFE Nexus framework for scenario analysis. It evaluates variations in water productivity, environmental effects, and economic outcomes, offering a detailed view of existing practices and their sustainable improvement potential. The WEFE Nexus assessment demonstrates that smart irrigation integration significantly decreased resource usage: water consumption was reduced by 58%, diesel fuel use for irrigation dropped by 57%, and the demand for labor and fertilizers decreased by 47% and 49%, respectively. This change led to enhanced crop yields and increased resource efficiency, demonstrating the potential of smart irrigation as a transformative strategy for sustainable agriculture in Lebanon and other arid areas. Economic analysis showed that farmers could recover the costs of installing the smart irrigation system within 3 months. The findings highlight the need for further research on integrating smart irrigation with renewable energy, showing potential for sustainable agricultural development. . 展开更多
关键词 Water-Energy-Food-Ecosystems Nexus Sustainable agriculture Smart irrigation Q-Nexus Model
下载PDF
Seasonal Sodium Percentage (%NA), Absorption Ratio (SAR) and Irrigation Water Quality Index (IWQI) Determination for Irrigation Purposes Along River Ethiope, Southern Nigeria
13
作者 Ochuko Ushurhe Famous Ozabor +3 位作者 Wekpe Vremudia Onyeayana Obisesan Adekunle Ifuwe Chineme Christabel Dibosa Francis Chike 《Journal of Water Resource and Protection》 CAS 2024年第7期523-537,共15页
The improvement of agriculture through irrigation farming is now of great need in the country Nigeria and Delta State. The country is going through a phase of famine and food insecurity caused by climate change and ra... The improvement of agriculture through irrigation farming is now of great need in the country Nigeria and Delta State. The country is going through a phase of famine and food insecurity caused by climate change and rain dependent agricultural practices. The aim of the study therefore, was to evaluate the quality of water from River Ethiope in Southern Nigeria for irrigation agriculture purposes using the percentage sodium (%Na), sodium-adsorption ratio (SAR) and irrigation-water quality index (IWQ1) techniques. The study deployed the experimental design and water samples were collected from different segments of the Ethiope River. A total of 144 water samples were collected and analysed for physicochemical parameters quality (EC, HCO3, Cl−, Na+, Mg2+, Ca2+ and K+) from January to December, 2022. The results showed that all the calculated values for %Na were within the classified rating of 20 < N ≤ 40 and 60 < Na ≤ 80;while SAR were within the range of 0 < SAR ≤ 10. The recorded values of IWQI were within the range of 70 - 55 and 55 - 40. This implies that the water is good to doubtful for %Na, excellent for SAR and of moderate and high restrictions for IWQI. Water was adjudged to be good for irrigation activities, and should be applicable in areas with moderate and high soil permeability. The routine testing of the water to ascertain physicochemical parameters quality regularly, in order not to affect its use for irrigation was among the recommendations. This finding herein shall be of use to Water Resources and Agriculture ministries in Nigeria. 展开更多
关键词 Evaluation irrigation-agriculture IWQI River-Ethiope SAR %Na
下载PDF
Reform of the Irrigation Sector and Creation of Functional and Sustainable Irrigation Water Users Associations (AUEI) in Niger: Capitalization of the Experience of the Konni AHA
14
作者 Saidou Abdoulkarimou Illou Mahamadou 《Agricultural Sciences》 2024年第2期209-229,共21页
During the 1980s, as part of a policy of liberalization, following budgetary cuts linked to the implementation of structural adjustment programs, management responsibilities for AHAs were transferred from ONAHA to coo... During the 1980s, as part of a policy of liberalization, following budgetary cuts linked to the implementation of structural adjustment programs, management responsibilities for AHAs were transferred from ONAHA to cooperatives concerned. Due to lack of financial resources, but also because of poor management, everywhere in Niger we are witnessing an accelerated deterioration of the irrigation infrastructure of hydro-agricultural developments. Institutional studies carried out on this situation led the State of Niger to initiate a reform of the governance of hydro-agricultural developments, by streng-thening the status of ONAHA, by creating an Association of Irrigation Water Users (AUEI) and by restructuring the old cooperatives. Indeed, this research aims to analyze the creation of functional and sustainable Irrigation Water User Associations (AUEI) in Niger in a context of reform of the irrigation sector, and based on the experience of the Konni AHA. It is based on a methodological approach which takes into account documentary research and the collection of data from 115 farmers, selected by reasoned choice and directly concerned by the management of the irrigated area. The data collected was analyzed and the results were analyzed using the systemic approach and the diagnostic process. The results show that the main mission of the AUEI is to ensure better management of water, hydraulic equipment and infrastructure on the hydro-agricultural developments of Konni. The creation of the Konni AUEI was possible thanks to massive support from the populations and authorities in the implementation process. After its establishment, the AUEI experienced a certain lethargy for some time due to the rehabilitation work of the AHA but currently it is functional and operational in terms of associative life and governance. Thus, the constraints linked to the legal system, the delay in the completion of the work, the uncertainties of access to irrigation water but also the problems linked to the change in mentality of certain ONAHA agents constitute the challenges that must be resolved in the short term for the operationalization of the Konni AUEI. 展开更多
关键词 Konni (Niger) Hydro-agricultural Developments Association of irrigation Water Users GOVERNANCE
下载PDF
The water-saving potential of using micro-sprinkling irrigation for winter wheat production on the North China Plain 被引量:6
15
作者 ZHAI Li-chao LU Li-hua +4 位作者 DONG Zhi-qiang ZHANG Li-hua ZHANG Jing-ting JIA Xiu-ling ZHANG Zheng-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第6期1687-1700,共14页
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving ... The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain. 展开更多
关键词 winter wheat grain yield water use efficiency micro-sprinkling irrigation traditional flooding irrigation water-saving potential
下载PDF
Development Potentials and Benefit Analysis of Efficient Water-saving Irrigation in Lixin County 被引量:2
16
作者 Cheng CAO 《Asian Agricultural Research》 2013年第8期28-31,34,共5页
On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide refe... On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide references for its future water-saving irrigation. 展开更多
关键词 EFFICIENT water-saving irrigation POTENTIAL Benefi
下载PDF
Cotton's Water Demand and Water-Saving Benefits under Drip Irrigation with Plastic Film Mulch 被引量:2
17
作者 Yingyu YAN Juyan LI 《Asian Agricultural Research》 2016年第4期32-36,41,共6页
The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Fi... The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%. 展开更多
关键词 Cotton’s WATER demand Cotton’s WATER consumption water-saving BENEFITS DRIP irrigation with PLASTIC film MULCH
下载PDF
Analysis on the Water-saving Irrigation Technique Based on the Perspective of Food Safety 被引量:1
18
作者 Jinpeng HUANG Benfu WANG Bende ZHOU 《Asian Agricultural Research》 2014年第8期89-92,共4页
The paper analyzed the important role of water saving in protecting the food safety,introduced the present development of agricultural water-saving technique,pointed out the potential risks of water resources,and prop... The paper analyzed the important role of water saving in protecting the food safety,introduced the present development of agricultural water-saving technique,pointed out the potential risks of water resources,and proposed the future development of water-saving irrigation. 展开更多
关键词 FOOD safety agriculturAL water-saving WATER resour
下载PDF
RESEARCH & PRACTICE OF WATER-SAVING AGRICULTURE 被引量:3
19
作者 Shan Lun(Institute of Soil & Water Conservation, CAS) 《Bulletin of the Chinese Academy of Sciences》 1998年第1期42-49,共8页
China is one of the world’s major agricultural countries. About 80% of its annual water consumption is used for fanning undertakings. On the other hand, China is a country deficient in water resources and in particul... China is one of the world’s major agricultural countries. About 80% of its annual water consumption is used for fanning undertakings. On the other hand, China is a country deficient in water resources and in particular, the water shortage is embarrassingly serious in the north. So the current development of water-saving agriculture (WSA) is a way of easing the strain between the supply and demand of water. This article expounds the WSA’s status in the development of the national economy, its research and implementation, and suggests an institutional system of WSA to be established in this country. 展开更多
关键词 PRACTICE OF water-saving agriculture RESEARCH WSA
下载PDF
Sustainable Water Management for Urban Agriculture, Gardens and Public Open Space Irrigation: A Case Study in Perth
20
作者 Raju Sharma Dhakal Geoff Syme +1 位作者 Edward Andre Charles Sabato 《Agricultural Sciences》 2015年第7期676-685,共10页
Urban agriculture has been increasingly popular as a form of modern agriculture in urban settings. It includes community gardens, fruit orchards, home gardens, veggie patches, public open spaces, reserves, urban fores... Urban agriculture has been increasingly popular as a form of modern agriculture in urban settings. It includes community gardens, fruit orchards, home gardens, veggie patches, public open spaces, reserves, urban forest, and recreational landscaping. However, irrigation using urban water supply has been identified as a major constraints for the development of urban agriculture. This study presents a sustainable water management trial at Butler, a northern sub-urban development in Perth, Western Australia, for urban irrigation. The trial system consists of a number of water saving features including untreated fit-for-purpose groundwater supplied via a third pipe network, drip irrigation, local weather station, soil moisture sensors connected with a local weather station, night time irrigation, soil enhancement with conditioning and mulching, and use of native plants and vegetation. The trial outcome was compared against controlled areas in terms of irrigation efficiency and sustainable water management for urban agriculture. The study demonstrated that a fit-for-purpose irrigation along with water sensitive land management could be a sustainable alternative for urban agriculture that would achieve a significant water saving and irrigation efficiency at urban settings. However, quality of untreated groundwater can be an issue while utilizing it for irrigation, but the research has shown that it can be managed with innovative irrigation techniques. This indicates that the fit-for-purpose irrigation system with water sensitive land management practices would be highly supportive in sustainable development of urban agriculture, vegetation and recreational landscaping. 展开更多
关键词 URBAN agriculture SUSTAINABLE irrigation System Integrated LAND and Water Management
下载PDF
上一页 1 2 93 下一页 到第
使用帮助 返回顶部