The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods ar...The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods are facing challenges in such reservoirs. In this paper, a new method is proposed for fluid identification and saturation calculation in low contrast tight sandstone reservoirs. First, a model for calculating apparent formation water resistivity is constructed, which takes into account the influence of shale on the resistivity calculation and avoids apparent formation water resistivity abnormal values.Based on the distribution of the apparent formation water resistivity obtained by the new model, the water spectrum is determined for fluid identification in low contrast tight sandstone reservoirs.Following this, according to the average, standard deviation, and endpoints of the water spectrum, a new four-parameter model for calculating reservoir oil and gas saturation is built. The methods proposed in this paper are applied to the low contrast tight sandstone reservoirs in the Q4 formation of the X53 block and X70 block in the south of Songliao Basin, China. The results show that the water spectrum method can effectively distinguish oil-water layers and water layers in the study area. The standard deviation of the water spectrum in the oil-water layer is generally greater than that in the water layer. The new four-parameter model yields more accurate oil and gas saturation. These findings verify the effectiveness of the proposed methods.展开更多
With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply...With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.展开更多
[Objective] The aim was to optimize the mass and rapid method for DNA extraction of Beauvena bassiana. [Method] Boiling water DNA extraction method was improved, DNA extraction liquid was heated by PCR instrument and ...[Objective] The aim was to optimize the mass and rapid method for DNA extraction of Beauvena bassiana. [Method] Boiling water DNA extraction method was improved, DNA extraction liquid was heated by PCR instrument and the extraction process was finished rapidly. [ Resuit] The quality of DNA obtained through mass and rapid extraction of fungal genomic DNA could meet the requirement of RAPD amplification analysis. The clear bands were amplified from 22 tested strains, the number of clear bands were different in the range of 2 -6 and the size of band were mainly concentrated in 450 -800 bp. The DNA extracted by this method also could completely meet the requirement of SCAR amplification. The amplified specific DNA bands used to mark the strain F263 were very clear. [Conclusion] This research provided relatively perfect method for mass and rapid extraction of fungal clenomic DNA.展开更多
High-purity aluminum titanate was synthesized via a water quenching method with waste-residue in the aluminum factory and industrial TiO2 as the main raw materials, which belongs to the comprehensive utilization of so...High-purity aluminum titanate was synthesized via a water quenching method with waste-residue in the aluminum factory and industrial TiO2 as the main raw materials, which belongs to the comprehensive utilization of solid wastes. Compared with the conventional method, it can reduce synthesis temperature, effectively inhibit decomposition and raise the content of AT; the addition of tiny silicon powder can improve the sintering and optimize the properties of AT. The crystalline phase structure and microstructure of each sample were characterized with XRD and SEM methods; the content of each crystalline phase in each sample was confirmed with Rietveld Quantification method; the properties of each sample were also tested. The experimental results showed that No. 4 is the optimum specimen, with the corresponding mass ratio of Al2O3/TiO2 to be 1.27 and the content of AT of 97.2 wt%. The addition of optimum tiny silicon powder is confirmed to be 8wt%; its corresponding bulk density is 2.63 g/cm^3, bending strength is 46.34 MPa, and the retention of one thermal vibration bending strength is 71.5%.展开更多
An amended method for accurate measuring the quantity of calcium silicate hydrate(C-S-H) in pure cement paste and blended cement paste by water adsorption was made, which based on R.A.Olson’s method. Two improvements...An amended method for accurate measuring the quantity of calcium silicate hydrate(C-S-H) in pure cement paste and blended cement paste by water adsorption was made, which based on R.A.Olson’s method. Two improvements to this method, such as using C-S-H gel by hydro-thermal synthesis as standard sample and the stoichiometry of C-S-H gel is partitioned based on hydration time and the amount of mineral admixture. The result of C-S-H gel content in pure cement paste and blended cement paste is higher than by R.A.Olson’s method.展开更多
Chronic heart failure(CHF)is a public health problem that seriously affects the quality of life of patients with poor prognosis.Western medicine has been mature in the treatment of CHF,but it still has some limitation...Chronic heart failure(CHF)is a public health problem that seriously affects the quality of life of patients with poor prognosis.Western medicine has been mature in the treatment of CHF,but it still has some limitations and adverse reactions in improving the clinical symptoms of CHF.TCM has a long history of understanding of CHF,and in recent years,TCM has summarized and developed the experience of predecessors in the treatment of CHF,In particular,diuretic therapy,combined with Warming Yang,tonifying Qi,promoting blood circulation and removing blood stasis,has achieved good curative effect in treating CHF.When combined with basic treatment of Western medicine,it can reduce the adverse reactions of Western medicine.This review is to summarize.展开更多
In recent years,remote sensing technology has been widely used to distinguish and extract water body information on the surface of land,investigate and analyze surface water resources,monitor and study ecological envi...In recent years,remote sensing technology has been widely used to distinguish and extract water body information on the surface of land,investigate and analyze surface water resources,monitor and study ecological environment,monitor and assess floods. Remote sensing data provided by MODIS sensor carried on satellites in the United States Earth Observation System( EOS) have high spatial and temporal resolution and spectral resolution,and images have a wide coverage range and are available for free. Moreover,they can be used for dynamic monitoring of changes in water body area on the earth quickly and efficiently. In this study,based on the analysis of spectral characteristics of water body,the characteristics of MODIS data and the methods of surface water extraction were introduced,and the advantages and disadvantages of various methods of water body extraction were analyzed by the comparison between the practical application effects of these methods.展开更多
The north anchorage caisson of Taizhou Bridge encountered some difficulties during the sinking process for the large sidewall frictional resistances. To solve this problem, a new concept and method called subsidence m...The north anchorage caisson of Taizhou Bridge encountered some difficulties during the sinking process for the large sidewall frictional resistances. To solve this problem, a new concept and method called subsidence method aided by water injection is proposed. Numeral analysis is adopted to simulate the effects of this method for the north anchor of Taizhou Bridge, which confirmed the feasibility and validity. Finally, the method is applied to the north anchor caisson during the caisson sinking procedure and helps the caisson sink and embed to the designed position smoothly.展开更多
Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies...Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies,many researchers found that the statistical constants in the formula of the Tong's B-type water drive method(also referred to as the Tong's B-type formula)are not applicable to multiple types of reservoirs,especially low-permeability ones,due to the limited range of reservoir types when the formula was conceived.Moreover,they put forward suggestions to improve the Tong's B-type formula,most of which focused on the research and calculation of the first constant in the formula.For oilfields in the development stages of high or ultra-high water cuts,it is widely accepted that different types of reservoirs have different limit water cuts.This understanding naturally makes it necessary to further modify the Tong's B-type formula.It is practically significant to establish the water drive formula and cross plot considering that the two constants in the formula vary with reservoir type.By analyzing the derivation process and conditions of the Tong's B-type formula,this study points out two key problems,i.e.,the two constants 7.5 and 1.69 in the formula are not applicable to all types of reservoir.Given this,this study establishes a function between key reservoir parameters and the first constant and another function between key reservoir parameters and recovery efficiency.Based on the established two functions and considering that different types of oil reservoir have different limit water cuts,this study develops an improved Tong's B-type formula and prepares the corresponding improved cross plot.The results of this study will improve the applicability and accuracy of Tong's B-type water drive method in predicting the trend of water cut increasing for different types of oil reservoirs.展开更多
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetat...[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetate copolymer and hydroxyl-modi- fied VCNAc were taken as coating materials to prepare slow release fertilizer. Nutri- ent release characteristics of VC/VAc slow release fertilizer was evaluated by water immersion method and the effects of VC/VAc slow release fertilizer on mineral ni- trogen were researched by pot experiment. [Result] The release periods of VC-VAc controlled-release urea and hydroxyl-modified VC/VAc coated urea were 60 and 50 d, respectively. Furthermore, the content of ammonium nitrogen reached the peak on the 30th d and the content of nitrate nitrogen reached the peak on the 60th d in soils in treatments with VCNAc and hydroxyl-modified VC/VAc; the content of nitrate nitrogen rose again on the 120th d in the treatment with VC/VAc. In terms of wheat yield, different treatments showed insignificant differences and rice yield in the treatment with VCNAc was significantly higher than that in the treatment with hy- droxyl-modified VCNAc (P〈0.05). [Conclusion] The release days of slow controlled- release fertilizer vary upon pot experiment method and water immersion method. Slow controlled-release fertilizer is not suitable for monoculture, due to long fertilizer efficiency, but multiple cropping would be optimal for its role to be fully exploited.展开更多
A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time err...A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.展开更多
Water quality assessment of lakes is important to determine functional zones of water use.Considering the fuzziness during the partitioning process for lake water quality in an arid area,a multiplex model of fuzzy clu...Water quality assessment of lakes is important to determine functional zones of water use.Considering the fuzziness during the partitioning process for lake water quality in an arid area,a multiplex model of fuzzy clustering with pattern recognition was developed by integrating transitive closure method,ISODATA algorithm in fuzzy clustering and fuzzy pattern recognition.The model was applied to partition the Ulansuhai Lake,a typical shallow lake in arid climate zone in the west part of Inner Mongolia,China and grade the condition of water quality divisions.The results showed that the partition well matched the real conditions of the lake,and the method has been proved accurate in the application.展开更多
A small amount of mineralizer MgO was added into Al2TiO5 synthesized from the sludge of aluminum factory to form Al(2-x)Mg(x+y)Ti(1-y)O(5-0.5x-y) solid solution and inhibit the decomposition of Al2TiO5 solid ...A small amount of mineralizer MgO was added into Al2TiO5 synthesized from the sludge of aluminum factory to form Al(2-x)Mg(x+y)Ti(1-y)O(5-0.5x-y) solid solution and inhibit the decomposition of Al2TiO5 solid solution. It increased the content of Al2TiO5 solid solution and improved the thermal stability of materials. In this work,XRD and SEM methods were adopted to characterize the crystalline structure and microstructure of each kind of sample. Rietveld Quantification method was used to determine the content of crystalline phases in each sample. Results show as follows: the optimal addition concentration of MgO was 2.0%,and the corresponding content of Al2TiO5 solid solution which displayed irregular bulk shape was 100%; the addition of mineralizer MgO could enhance the flexural strength and thermal stability of Al2TiO5 solid solution materials. The optimal addition concentration of MgO determined by performance analysis was 2.0%,and its corresponding retention rate of thermal-shock flexural strength was 86.4%. Structure analysis and performance analysis resulted in good accordance.展开更多
In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reducti...In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming.展开更多
The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been bu...The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years’ experiences obtained from the first large-scale (millions of cubic meters) underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles for design and construction of the underground water-sealed oil storage caverns are proposed.展开更多
Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynam-ics, typhoon waves show special characteristics as big waves appeared at the high water level (HWL) and small wave...Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynam-ics, typhoon waves show special characteristics as big waves appeared at the high water level (HWL) and small waves emerged at low and middle water levels (LWL and MWL) in radial sand ridges (RSR). It is as-sumed that the mud damping, sandy bed friction and wave breaking effects have a great influence on the typhoon wave propagation in this area. Under the low wave energy, a mud layer will form and transport into the shallow area, thus the mud damping effects dominate at the LWL and the MWL. And high Collins coef-ficient (c around 1) can be applied to computing the damping effects at the LWL and the MWL. But under the high wave energy, the bottom sediment will be stirred and suspended, and then the damping effects disappear at the HWL. Thus the varying Collins coefficient with the water level method (VCWL) is imple-mented into the SWAN to model the typhoon wave process in the Lanshayang Channel (LSYC) of the RSR, the observed wave data under “Winnie” (“9711”) typhoon was used as validation. The results show that the typhoon wave in the RSR area is able to be simulated by the VCWL method concisely, and a constant wave breaking coefficient (γ) equaling 0.78 is better for the RSR where wide tidal flats and gentle bed slopes exist.展开更多
基金funded by the National Natural Science Foundation of China (42174131)。
文摘The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods are facing challenges in such reservoirs. In this paper, a new method is proposed for fluid identification and saturation calculation in low contrast tight sandstone reservoirs. First, a model for calculating apparent formation water resistivity is constructed, which takes into account the influence of shale on the resistivity calculation and avoids apparent formation water resistivity abnormal values.Based on the distribution of the apparent formation water resistivity obtained by the new model, the water spectrum is determined for fluid identification in low contrast tight sandstone reservoirs.Following this, according to the average, standard deviation, and endpoints of the water spectrum, a new four-parameter model for calculating reservoir oil and gas saturation is built. The methods proposed in this paper are applied to the low contrast tight sandstone reservoirs in the Q4 formation of the X53 block and X70 block in the south of Songliao Basin, China. The results show that the water spectrum method can effectively distinguish oil-water layers and water layers in the study area. The standard deviation of the water spectrum in the oil-water layer is generally greater than that in the water layer. The new four-parameter model yields more accurate oil and gas saturation. These findings verify the effectiveness of the proposed methods.
文摘With the acceleration of urbanization,the demand for water supply and drainage pipe networks has increased significantly.In the planning of urban construction,it is necessary to optimize the design of the water supply and drainage system pipe network to effectively save energy while providing residents with more accessible water resources.Therefore,the municipal water supply and drainage system and the water transmission methods should be designed according to the geographical conditions of the city.In this paper,we mainly analyze the design of municipal water supply and drainage systems and the selection of water transmission methods.Besides,the optimization of the water supply and drainage network zoning process and pipe network maintenance is also discussed,so as to provide a reference for municipal water supply and drainage work.
基金Supported by Anhui Natural Science Foundation(090411004)General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China Project 2006IK110)Japanese Science Promotion Society Project(P06578)~~
文摘[Objective] The aim was to optimize the mass and rapid method for DNA extraction of Beauvena bassiana. [Method] Boiling water DNA extraction method was improved, DNA extraction liquid was heated by PCR instrument and the extraction process was finished rapidly. [ Resuit] The quality of DNA obtained through mass and rapid extraction of fungal genomic DNA could meet the requirement of RAPD amplification analysis. The clear bands were amplified from 22 tested strains, the number of clear bands were different in the range of 2 -6 and the size of band were mainly concentrated in 450 -800 bp. The DNA extracted by this method also could completely meet the requirement of SCAR amplification. The amplified specific DNA bands used to mark the strain F263 were very clear. [Conclusion] This research provided relatively perfect method for mass and rapid extraction of fungal clenomic DNA.
基金Supported by the Natural Science Foundation of Fujian Province (No. T0750005)the Science and Technology Developing Foundation of Fuzhou University (No. 2007-XQ-02)
文摘High-purity aluminum titanate was synthesized via a water quenching method with waste-residue in the aluminum factory and industrial TiO2 as the main raw materials, which belongs to the comprehensive utilization of solid wastes. Compared with the conventional method, it can reduce synthesis temperature, effectively inhibit decomposition and raise the content of AT; the addition of tiny silicon powder can improve the sintering and optimize the properties of AT. The crystalline phase structure and microstructure of each sample were characterized with XRD and SEM methods; the content of each crystalline phase in each sample was confirmed with Rietveld Quantification method; the properties of each sample were also tested. The experimental results showed that No. 4 is the optimum specimen, with the corresponding mass ratio of Al2O3/TiO2 to be 1.27 and the content of AT of 97.2 wt%. The addition of optimum tiny silicon powder is confirmed to be 8wt%; its corresponding bulk density is 2.63 g/cm^3, bending strength is 46.34 MPa, and the retention of one thermal vibration bending strength is 71.5%.
基金Funded by the Ministry of Science and Technology of the People's Republic of China (No. 2001CD610704-2) Wuhan City Chenguan Plan (No. 20055003059231)
文摘An amended method for accurate measuring the quantity of calcium silicate hydrate(C-S-H) in pure cement paste and blended cement paste by water adsorption was made, which based on R.A.Olson’s method. Two improvements to this method, such as using C-S-H gel by hydro-thermal synthesis as standard sample and the stoichiometry of C-S-H gel is partitioned based on hydration time and the amount of mineral admixture. The result of C-S-H gel content in pure cement paste and blended cement paste is higher than by R.A.Olson’s method.
基金National Natural Science Foundation of China(No.81673891,81560760)Project of Health Department of Guangxi Zhuang Autonomous Region(No.GZZJ16-03)+1 种基金Project of Health and Family Planning Commission of Guangxi Zhuang Autonomous Region(No.S201532)Second Batch of Special Scientific Research Projects for the Construction of the National TCM Clinical Research Base(No.JDZX2015146)。
文摘Chronic heart failure(CHF)is a public health problem that seriously affects the quality of life of patients with poor prognosis.Western medicine has been mature in the treatment of CHF,but it still has some limitations and adverse reactions in improving the clinical symptoms of CHF.TCM has a long history of understanding of CHF,and in recent years,TCM has summarized and developed the experience of predecessors in the treatment of CHF,In particular,diuretic therapy,combined with Warming Yang,tonifying Qi,promoting blood circulation and removing blood stasis,has achieved good curative effect in treating CHF.When combined with basic treatment of Western medicine,it can reduce the adverse reactions of Western medicine.This review is to summarize.
基金Supported by National Natural Science Foundation of China(41401496)China Postdoctoral Science Foundation(2016M592815)
文摘In recent years,remote sensing technology has been widely used to distinguish and extract water body information on the surface of land,investigate and analyze surface water resources,monitor and study ecological environment,monitor and assess floods. Remote sensing data provided by MODIS sensor carried on satellites in the United States Earth Observation System( EOS) have high spatial and temporal resolution and spectral resolution,and images have a wide coverage range and are available for free. Moreover,they can be used for dynamic monitoring of changes in water body area on the earth quickly and efficiently. In this study,based on the analysis of spectral characteristics of water body,the characteristics of MODIS data and the methods of surface water extraction were introduced,and the advantages and disadvantages of various methods of water body extraction were analyzed by the comparison between the practical application effects of these methods.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-160)
文摘The north anchorage caisson of Taizhou Bridge encountered some difficulties during the sinking process for the large sidewall frictional resistances. To solve this problem, a new concept and method called subsidence method aided by water injection is proposed. Numeral analysis is adopted to simulate the effects of this method for the north anchor of Taizhou Bridge, which confirmed the feasibility and validity. Finally, the method is applied to the north anchor caisson during the caisson sinking procedure and helps the caisson sink and embed to the designed position smoothly.
文摘Tong's B-type water drive method was proposed as early as the 1970s and has been widely applied in the dynamic prediction and effective evaluation of oilfield development.Through extensive applications and studies,many researchers found that the statistical constants in the formula of the Tong's B-type water drive method(also referred to as the Tong's B-type formula)are not applicable to multiple types of reservoirs,especially low-permeability ones,due to the limited range of reservoir types when the formula was conceived.Moreover,they put forward suggestions to improve the Tong's B-type formula,most of which focused on the research and calculation of the first constant in the formula.For oilfields in the development stages of high or ultra-high water cuts,it is widely accepted that different types of reservoirs have different limit water cuts.This understanding naturally makes it necessary to further modify the Tong's B-type formula.It is practically significant to establish the water drive formula and cross plot considering that the two constants in the formula vary with reservoir type.By analyzing the derivation process and conditions of the Tong's B-type formula,this study points out two key problems,i.e.,the two constants 7.5 and 1.69 in the formula are not applicable to all types of reservoir.Given this,this study establishes a function between key reservoir parameters and the first constant and another function between key reservoir parameters and recovery efficiency.Based on the established two functions and considering that different types of oil reservoir have different limit water cuts,this study develops an improved Tong's B-type formula and prepares the corresponding improved cross plot.The results of this study will improve the applicability and accuracy of Tong's B-type water drive method in predicting the trend of water cut increasing for different types of oil reservoirs.
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.
基金Supported by National Department Public Benefit Research Foundation(201203013)Modern Agricultural Industry Technology System(CARS-11-B-15)+2 种基金IPNI Project(JIANGSU-10)Special Fund for Agro-scientific Research in the Public Interest(201003014-1-2)Jiangsu Agriculture S&T Self-Innovation Project[CX(12)3037]~~
文摘[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetate copolymer and hydroxyl-modi- fied VCNAc were taken as coating materials to prepare slow release fertilizer. Nutri- ent release characteristics of VC/VAc slow release fertilizer was evaluated by water immersion method and the effects of VC/VAc slow release fertilizer on mineral ni- trogen were researched by pot experiment. [Result] The release periods of VC-VAc controlled-release urea and hydroxyl-modified VC/VAc coated urea were 60 and 50 d, respectively. Furthermore, the content of ammonium nitrogen reached the peak on the 30th d and the content of nitrate nitrogen reached the peak on the 60th d in soils in treatments with VCNAc and hydroxyl-modified VC/VAc; the content of nitrate nitrogen rose again on the 120th d in the treatment with VC/VAc. In terms of wheat yield, different treatments showed insignificant differences and rice yield in the treatment with VCNAc was significantly higher than that in the treatment with hy- droxyl-modified VCNAc (P〈0.05). [Conclusion] The release days of slow controlled- release fertilizer vary upon pot experiment method and water immersion method. Slow controlled-release fertilizer is not suitable for monoculture, due to long fertilizer efficiency, but multiple cropping would be optimal for its role to be fully exploited.
基金supported by the National Natural Science Foundation of China (Grant No 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No IRT071)
文摘A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.
基金Supported by the National Natural Science Foundation of China (No.50269001, 50569002, 50669004)Natural Science Foundation of Inner Mongolia (No.200208020512, 200711020604)The Key Scientific and Technologic Project of the 10th Five-Year Plan of Inner Mongolia (No.20010103)
文摘Water quality assessment of lakes is important to determine functional zones of water use.Considering the fuzziness during the partitioning process for lake water quality in an arid area,a multiplex model of fuzzy clustering with pattern recognition was developed by integrating transitive closure method,ISODATA algorithm in fuzzy clustering and fuzzy pattern recognition.The model was applied to partition the Ulansuhai Lake,a typical shallow lake in arid climate zone in the west part of Inner Mongolia,China and grade the condition of water quality divisions.The results showed that the partition well matched the real conditions of the lake,and the method has been proved accurate in the application.
基金supported by the Natural Science Foundation of Fujian Province (No. T08J0129)the Science and Technology Developing Foundation of Fuzhou University (No. 2008-XQ-001)2007-year New Century Talents Supporting Program of Fujian Province (No. XSJRC2007-17)
文摘A small amount of mineralizer MgO was added into Al2TiO5 synthesized from the sludge of aluminum factory to form Al(2-x)Mg(x+y)Ti(1-y)O(5-0.5x-y) solid solution and inhibit the decomposition of Al2TiO5 solid solution. It increased the content of Al2TiO5 solid solution and improved the thermal stability of materials. In this work,XRD and SEM methods were adopted to characterize the crystalline structure and microstructure of each kind of sample. Rietveld Quantification method was used to determine the content of crystalline phases in each sample. Results show as follows: the optimal addition concentration of MgO was 2.0%,and the corresponding content of Al2TiO5 solid solution which displayed irregular bulk shape was 100%; the addition of mineralizer MgO could enhance the flexural strength and thermal stability of Al2TiO5 solid solution materials. The optimal addition concentration of MgO determined by performance analysis was 2.0%,and its corresponding retention rate of thermal-shock flexural strength was 86.4%. Structure analysis and performance analysis resulted in good accordance.
基金Financial supports for this work, provided by the National Natural Science Foundation of China (No. 51274097)the Scientific Research Fund of Hunan Provincial Education Department of China (No. 13A020)the Open Projects of State Key Laboratory of Coal Resources and Safe Mining, CUMT (No. 13KF03)
文摘In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming.
文摘The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years’ experiences obtained from the first large-scale (millions of cubic meters) underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles for design and construction of the underground water-sealed oil storage caverns are proposed.
基金The National High Technology Research and Development Program(863 Program)of China under contract No.2012AA112509the National Natural Science Fundation of China under contract No.41373112the Open Research Foundation from the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute under contract No.2012491311
文摘Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynam-ics, typhoon waves show special characteristics as big waves appeared at the high water level (HWL) and small waves emerged at low and middle water levels (LWL and MWL) in radial sand ridges (RSR). It is as-sumed that the mud damping, sandy bed friction and wave breaking effects have a great influence on the typhoon wave propagation in this area. Under the low wave energy, a mud layer will form and transport into the shallow area, thus the mud damping effects dominate at the LWL and the MWL. And high Collins coef-ficient (c around 1) can be applied to computing the damping effects at the LWL and the MWL. But under the high wave energy, the bottom sediment will be stirred and suspended, and then the damping effects disappear at the HWL. Thus the varying Collins coefficient with the water level method (VCWL) is imple-mented into the SWAN to model the typhoon wave process in the Lanshayang Channel (LSYC) of the RSR, the observed wave data under “Winnie” (“9711”) typhoon was used as validation. The results show that the typhoon wave in the RSR area is able to be simulated by the VCWL method concisely, and a constant wave breaking coefficient (γ) equaling 0.78 is better for the RSR where wide tidal flats and gentle bed slopes exist.