期刊文献+
共找到11,731篇文章
< 1 2 250 >
每页显示 20 50 100
Protaper Next和Wave One根管预备系统对根管治疗术后疼痛的影响 被引量:6
1
作者 陆蓓 《中国临床医学》 2018年第5期766-768,共3页
目的:比较Protaper Next和Wave One根管预备系统对根管治疗术后疼痛的影响。方法:选取符合纳入标准的234例患者,随机分为Protaper Next组(n=112)和Wave One组(n=122)。术后24h询问患者疼痛情况,参照Ceorgopoulou疼痛评定标准,比较术后... 目的:比较Protaper Next和Wave One根管预备系统对根管治疗术后疼痛的影响。方法:选取符合纳入标准的234例患者,随机分为Protaper Next组(n=112)和Wave One组(n=122)。术后24h询问患者疼痛情况,参照Ceorgopoulou疼痛评定标准,比较术后两组患者不同根管数目、不同牙髓活力患牙疼痛情况。结果:两组患者术后疼痛情况差异无统计学意义;活牙髓患牙疼痛率低于死牙髓(P=0.000 2)。结论:Protaper Next和Wave One根管预备系统根管治疗后疼痛情况不能作为选择器械的依据;患者牙髓活力状态影响患者术后疼痛的发生。 展开更多
关键词 PROTAPER NEXT wave one 根管治疗 术后疼痛
下载PDF
单根锉Wave One镍钛器械用于治疗弯曲根管的临床效果 被引量:1
2
作者 沈宏 《中外医疗》 2018年第13期55-56,96,共3页
目的观察单根锉Wave One镍钛器械用于治疗弯曲根管的临床效果。方法采用临床资料查证法及充填后疗效观察法。方便选取2014年9月—2016年9月以来该院口腔科诊治的98例磨牙急、慢性根尖周炎和牙髓炎患者,所有磨牙牙根都有一定的弯曲度。... 目的观察单根锉Wave One镍钛器械用于治疗弯曲根管的临床效果。方法采用临床资料查证法及充填后疗效观察法。方便选取2014年9月—2016年9月以来该院口腔科诊治的98例磨牙急、慢性根尖周炎和牙髓炎患者,所有磨牙牙根都有一定的弯曲度。按照预备根管所采用的器械不同,等分为对照组和观察组,分别采用传统不锈钢K锉和单根锉Wave One镍钛器械,都采用侧压方式进行根管充填,观察两组用于治疗弯曲根管的临床效果。记录根管预备过程中台阶形成,根尖拉开和治疗时间,比较根管成形和充填效果,随访充填后疼痛情况。结果对照组优良率85.71%(42/49)明显低于观察组优良率97.96%(48/49),两组数据差异有统计学意义(χ~2=11.334 9,P=0.049 6<0.05),观察组行根管治疗术的时间比对照组明显缩短,大大提升临床效率。结论单根锉Wave One镍钛器械用于治疗弯曲根管的临床效果确切,比之传统不锈钢K锉有着更高的临床疗效优良率,且大幅减少治疗时间,值得大力推广。 展开更多
关键词 单根锉 wave one 镍钛器械 治疗 弯曲根管
下载PDF
ON MONOTONE TRAVELING WAVES FOR NICHOLSON'S BLOWFLIES EQUATION WITH DEGENERATE p-LAPLACIAN DIFFUSION
3
作者 Rui HUANG Yong WANG Zhuo YIN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1550-1571,共22页
We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth tr... We study the existence and stability of monotone traveling wave solutions of Nicholson's blowflies equation with degenerate p-Laplacian diffusion.We prove the existence and nonexistence of non-decreasing smooth traveling wave solutions by phase plane analysis methods.Moreover,we show the existence and regularity of an original solution via a compactness analysis.Finally,we prove the stability and exponential convergence rate of traveling waves by an approximated weighted energy method. 展开更多
关键词 degenerate diffusion P-LAPLACIAN traveling waves stability
下载PDF
Is the Cape Stone Forest in Shantou City formed by wave erosion? A comparison of the pedestal rocks on the coasts and the mountains of Queshi in eastern Guangdong, China
4
作者 CHEN Min WANG Wei 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1447-1463,共17页
Cape Stone Forest is a group of granite rock pillars(pedestal rocks) towering over Shilin Lake, on the southern shore of Shantou Bay in eastern Guangdong, China. The rock pillars were previously identified as sea stac... Cape Stone Forest is a group of granite rock pillars(pedestal rocks) towering over Shilin Lake, on the southern shore of Shantou Bay in eastern Guangdong, China. The rock pillars were previously identified as sea stacks because they have marine notch-like concave sidewalls at their base, and more importantly, the lake is immediately adjacent to the bay, which is exposed to the open sea. However, rock pillars similar in shape and size can also be found at the top of Queshi Mountain, which is only about 300 meters northwest of the lake and about 85 meters above sea level. Therefore, the marine origin of Cape Stone Forest is seriously questioned. In this study, 3D imagery and drone technology were used to collect data in the investigations without direct manual measurements in the water or on the mountain. It shows that the concave sidewalls of the rock pillars in the lake and on the mountains occur at different heights and are exposed to different directions, while a natural sea stack on Mayu Island at the mouth of Shantou Bay has a horizontal notch parallel to the sea level, although the granite rock of the sea stack is the same as that of the lake and the mountains. The eastern side of the island, where the sea stack is located, is exposed to the open sea but blocks large waves for the rock pillars in the lake. Therefore, the origin of Cape Stone Forest cannot be explained by wave-based mechanisms. The only satisfactory explanation that takes into account all the field evidence is that the narrow rock pillars of the lake and mountain were formed by chemical weathering that penetrated closely the spaced joints of the granite rock, and the notch-like concave sidewalls were formed by more effective chemical weathering at the base of the pillars. 展开更多
关键词 Pedestal rock GRANITE Closely spaced joints wave erosion Chemical weathering
下载PDF
Effect of gas saturation on P-wave velocity in tight sandstone
5
作者 Pan Bao-Zhi Zhou Wei-Yi +2 位作者 Guo Yu-Hang Fang Chun-Hui Zhang Li-Hua 《Applied Geophysics》 SCIE CSCD 2024年第3期487-495,617,共10页
By measuring the variation of the P-and S-wave velocities of tight sandstone samples under water saturation,it was confirmed that with the decrease in water saturation,the P-wave velocity first decreased and then incr... By measuring the variation of the P-and S-wave velocities of tight sandstone samples under water saturation,it was confirmed that with the decrease in water saturation,the P-wave velocity first decreased and then increased.The variation in velocity was influenced by the sandstone’s porosity.The commonly used Gassmann equation based on fluid substitution theory was studied.Comparing the calculated results with the measured data,it was found that the Gassmann equation agreed well with the measured data at high water saturation,but it could not explain the bending phenomenon of P-wave velocity at low saturation.This indicated that these equations could not accurately describe the relationship between fluid content and rock acoustic velocity.The reasons for this phenomenon were discussed through Taylor’s expansion.The coefficients of the fitting formula were calculated and verified by fitting the measured acoustic velocity changes of the cores.The relationship between P-wave velocity and saturation was discussed,which provides experimental support for calculating saturation using seismic and acoustic logging data. 展开更多
关键词 Tight sandstone Saturation model Reservoir parameters Acoustic wave measurement
下载PDF
Evaluation of Nonbreaking Wave-Induced Mixing Parameterization Schemes Based on a One-Dimensional Ocean Model
6
作者 TANG Ran HUANG Chuanjiang +1 位作者 DAI Dejun WANG Gang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期567-576,共10页
Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve... Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve the simulation of the upper ocean.Thus far,several nonbreaking wave-induced mixing parameterization schemes have been proposed;however,no quantitative comparison has been performed among them.In this paper,a one-dimensional ocean model was used to compare the performances of five schemes,including those of Qiao et al.(Q),Hu and Wang(HW),Huang and Qiao(HQ),Pleskachevsky et al.(P),and Ghantous and Babanin(GB).Similar to previous studies,all of these schemes can decrease the simulated sea surface temperature(SST),increase the subsurface temperature,and deepen the mixed layer,thereby alleviating the common thermal deviation problem of the ocean model for upper ocean simulation.Among these schemes,the HQ scheme exhibited the weakest wave-induced mixing effect,and the HW scheme exhibited the strongest effect;the other three schemes exhibited roughly the same effect.In particular,the Q and P schemes exhibited nearly the same effect.In the simulation based on observations from the Ocean Weather Station Papa,the HQ scheme exhibited the best performance,followed by the Q scheme.In the experiment with the HQ scheme,the root-mean-square deviation of the simulated SST from the observations was 0.43℃,and the mixed layer depth(MLD)was 2.0 m.As a contrast,the deviations of the SST and MLD reached 1.25℃ and 8.4 m,respectively,in the experiment without wave-induced mixing. 展开更多
关键词 wave-induced mixing surface waves sea surface temperature mixed layer depth General Ocean Turbulence Model
下载PDF
Harmonic balance simulation of the influence of component uniformity and reliability on the performance of a Josephson traveling wave parametric amplifier
7
作者 郑煜臻 熊康林 +1 位作者 冯加贵 杨辉 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期339-343,共5页
A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A ... A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A typical JTWPA consists of thousands of Josephson junctions connected in series to form a transmission line and hundreds of shunt LC resonators periodically loaded along the line for phase matching.Because the variation of these capacitors and inductors can be detrimental to their high-frequency characteristics,the fabrication of a JTWPA typically necessitates precise processing equipment.To guide the fabrication process and further improve the design for manufacturability,it is necessary to understand how each electronic component affects the amplifier.In this paper,we use the harmonic balance method to conduct a comprehensive study on the impact of nonuniformity and fabrication yield of the electronic components on the performance of a JTWPA.The results provide insightful and scientific guidance for device design and fabrication processes. 展开更多
关键词 Josephson traveling wave parametric amplifier(JTWPA) harmonic balance method YIELDS UNIFORMITY
下载PDF
Theoretical Quantization of Exact Wave Turbulence in Exponential Oscillons and Pulsons
8
作者 Victor A. Miroshnikov 《American Journal of Computational Mathematics》 2024年第2期203-239,共37页
In a preceding paper, the theoretical and experimental, deterministic and random, scalar and vector, kinematic structures, the theoretical and experimental, deterministic-deterministic, deterministic-random, random-de... In a preceding paper, the theoretical and experimental, deterministic and random, scalar and vector, kinematic structures, the theoretical and experimental, deterministic-deterministic, deterministic-random, random-deterministic, random-random, scalar and vector, dynamic structures have been developed to compute the exact solution for wave turbulence of exponential pulsons and oscillons that is governed by the nonstationary three-dimensional Navier-Stokes equations. The rectangular, diagonal, and triangular summations of matrices of the turbulent kinetic energy and general terms of numerous sums have been used in the current paper to develop theoretical quantization of the kinetic energy of exact wave turbulence. Nested structures of a cumulative energy pulson, a deterministic energy pulson, a deterministic internal energy oscillon, a deterministic-random internal energy oscillon, a random internal energy oscillon, a random energy pulson, a deterministic diagonal energy oscillon, a deterministic external energy oscillon, a deterministic-random external energy oscillon, a random external energy oscillon, and a random diagonal energy oscillon have been established. In turn, the energy pulsons and oscillons include deterministic group pulsons, deterministic internal group oscillons, deterministic-random internal group oscillons, random internal group oscillons, random group pulsons, deterministic diagonal group oscillons, deterministic external group oscillons, deterministic-random external group oscillons, random external group oscillons, and random diagonal group oscillons. Sequentially, the group pulsons and oscillons contain deterministic wave pulsons, deterministic internal wave oscillons, deterministic-random internal wave oscillons, random internal wave oscillons, random wave pulsons, deterministic diagonal wave oscillons, deterministic external wave oscillons, deterministic-random external wave oscillons, random external wave oscillons, random diagonal wave oscillons. Consecutively, the wave pulsons and oscillons are composed of deterministic elementary pulsons, deterministic internal elementary oscillons, deterministic-random internal elementary oscillons, random internal elementary oscillons, random elementary pulsons, deterministic diagonal elementary oscillons, deterministic external elementary oscillons, deterministic-random external elementary oscillons, random-deterministic external elementary oscillons, random external elementary oscillons, and random diagonal elementary oscillons. Symbolic computations of exact expansions have been performed using experimental and theoretical programming in Maple. 展开更多
关键词 The Navier-Stokes Equations Deterministic-Random Internal Energy Oscillon Deterministic-Random External Energy Oscillon Deterministic-Random Internal Group Oscillons Deterministic-Random External Group Oscillons Deterministic-Random Internal wave Oscillons Deterministic-Random External wave Oscillons Deterministic-Random Internal Elementary Oscillons Deterministic-Random External Elementary Oscillons Random-Deterministic External Elementary Oscillons
下载PDF
Multicomponent Nanoparticles Synergistic One-Dimensional Nanofibers as Heterostructure Absorbers for Tunable and Efficient Microwave Absorption 被引量:10
9
作者 Chenxi Wang Yue Liu +2 位作者 Zirui Jia Wanru Zhao Guanglei Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期236-251,共16页
Application of novel radio technologies and equip-ment inevitably leads to electromagnetic pollution.One-dimensional polymer-based composite membrane structures have been shown to be an effective strategy to obtain hi... Application of novel radio technologies and equip-ment inevitably leads to electromagnetic pollution.One-dimensional polymer-based composite membrane structures have been shown to be an effective strategy to obtain high-performance microwave absorbers.Herein,we reported a one-dimensional N-doped carbon nanofibers material which encapsulated the hollow Co_(3)SnC_(0.7) nano-cubes in the fiber lumen by electrospinning.Space charge stacking formed between nanoparticles can be channeled by longitudinal fibrous structures.The dielectric constant of the fibers is highly related to the carbonization temperature,and the great impedance matching can be achieved by synergetic effect between Co_(3)SnC_(0.7) and carbon network.At 800℃,the necklace-like Co_(3)SnC_(0.7)/CNF with 5%low load achieves an excellent RL value of−51.2 dB at 2.3 mm and the effective absorption bandwidth of 7.44 GHz with matching thickness of 2.5 mm.The multiple electromagnetic wave(EMW)reflections and interfacial polarization between the fibers and the fibers internal contribute a major effect to attenuating the EMW.These strategies for regulating electromagnetic performance can be expanded to other electromagnetic functional materials which facilitate the development of emerging absorbers. 展开更多
关键词 Electrostatic spinning Necklace-structured nanofibers Broadband response Electromagnetic wave absorption
下载PDF
A Parameterization Scheme for Wind Wave Modules that Includes the Sea Ice Thickness in the Marginal Ice Zone 被引量:1
10
作者 Dongang LIU Qinghua YANG +2 位作者 Andrei TSARAU Yongtao HUANG Xuewei LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第12期2279-2287,共9页
The global wave model WAVEWATCH III®works well in open water.To simulate the propagation and attenuation of waves through ice-covered water,existing simulations have considered the influence of sea ice by adding ... The global wave model WAVEWATCH III®works well in open water.To simulate the propagation and attenuation of waves through ice-covered water,existing simulations have considered the influence of sea ice by adding the sea ice concentration in the wind wave module;however,they simply suppose that the wind cannot penetrate the ice layer and ignore the possibility of wind forcing waves below the ice cover.To improve the simulation performance of wind wave modules in the marginal ice zone(MIZ),this study proposes a parameterization scheme by directly including the sea ice thickness.Instead of scaling the wind input with the fraction of open water,this new scheme allows partial wind input in ice-covered areas based on the ice thickness.Compared with observations in the Barents Sea in 2016,the new scheme appears to improve the modeled waves in the high-frequency band.Sensitivity experiments with and without wind wave modules show that wind waves can play an important role in areas with low sea ice concentration in the MIZ. 展开更多
关键词 wind wave IMU wave PSD wave attenuation Barents Sea
下载PDF
A case study of blasting vibration attenuation based on wave component characteristics 被引量:1
11
作者 Chong Yu Haibo Li +2 位作者 Haozhen Yue Xiaohu Wang Xiang Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1298-1311,共14页
A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak par... A typical blasting vibration wave is a composite wave,and its attenuation law is affected by the type of dominant wave component.The purpose of the present study is to establish an attenuation equation of the peak particle velocity(PPV),taking into account the attenuation characteristics of P-,S-and R-waves in the blasting vibration wave.Field blasting tests were carried out as a case to specifically apply the proposed equation.In view of the fact that the discrete properties of rock mass will inevitably cause the uncertainty of blasting vibration,we also carried out a probability analysis of PPV uncertainty,and introduced the concept of reliability to evaluate blasting vibration.The results showed that the established attenuation equation had a higher prediction accuracy,and can be considered as a promising equation implemented on more complex sites.The adopted uncertainty analysis method can comprehensively take account of the attenuation law of blasting vibration measured on site and discrete properties of rock masses.The obtained distribution of the PPV uncertainty factor can quantitatively evaluate the reliability of blasting vibration,which is a powerful and necessary supplement to the PPV attenuation equation. 展开更多
关键词 Blasting vibration wave component Field blasting tests Attenuation equation Uncertainty analysis Bayesian theory
下载PDF
Nitrogen‑Doped Magnetic‑Dielectric‑Carbon Aerogel for High‑Efficiency Electromagnetic Wave Absorption 被引量:1
12
作者 Shijie Wang Xue Zhang +5 位作者 Shuyan Hao Jing Qiao Zhou Wang Lili Wu Jiurong Liu Fenglong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期313-327,共15页
Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facil... Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption(EWA)materials with a broad effective absorption bandwidth(EAB)and strong absorption yet hits some snags.Herein,the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment,homogeneous and abundant nickel(Ni)and manganese oxide(MnO)particles in situ grew on the carbon aerogels.Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels,the nitrogen-doped magnetic-dielectric-carbon aerogel(Ni/MnO-CA)suggests a praiseworthy EWA performance,with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss(RLmin)of−64.09 dB,while achieving a specific reflection loss of−253.32 dB mm−1.Furthermore,the aerogel reveals excellent radar stealth,infrared stealth,and thermal management capabilities.Hence,the high-performance,easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection,electronic devices and aerospace. 展开更多
关键词 Electromagnetic wave absorption Wide bandwidth Dielectric-magnetic synergy MULTIFUNCTION
下载PDF
Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption 被引量:1
13
作者 Kaili Zhang Yuhao Liu +5 位作者 Yanan Liu Yuefeng Yan Guansheng Ma Bo Zhong Renchao Che Xiaoxiao Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期79-96,共18页
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the... Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. 展开更多
关键词 Reduced graphene oxide Fe nanosheets Dielectric loss Electromagnetic wave absorption
下载PDF
Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature 被引量:1
14
作者 Cuiping Li Dan Li +4 位作者 Shuai Zhang Long Ma Lei Zhang Jingwei Zhang Chunhong Gong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期147-160,共14页
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently... Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering. 展开更多
关键词 TiN nanotubes Interface engineering Polarization loss Impedance matching Electromagnetic wave absorption performance
下载PDF
Accurate simulations of pure-viscoacoustic wave propagation in tilted transversely isotropic media 被引量:1
15
作者 Qiang Mao Jian-Ping Huang +2 位作者 Xin-Ru Mu Ji-Dong Yang Yu-Jian Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期866-884,共19页
Forward modeling of seismic wave propagation is crucial for the realization of reverse time migration(RTM) and full waveform inversion(FWI) in attenuating transversely isotropic media. To describe the attenuation and ... Forward modeling of seismic wave propagation is crucial for the realization of reverse time migration(RTM) and full waveform inversion(FWI) in attenuating transversely isotropic media. To describe the attenuation and anisotropy properties of subsurface media, the pure-viscoacoustic anisotropic wave equations are established for wavefield simulations, because they can provide clear and stable wavefields. However, due to the use of several approximations in deriving the wave equation and the introduction of a fractional Laplacian approximation in solving the derived equation, the wavefields simulated by the previous pure-viscoacoustic tilted transversely isotropic(TTI) wave equations has low accuracy. To accurately simulate wavefields in media with velocity anisotropy and attenuation anisotropy, we first derive a new pure-viscoacoustic TTI wave equation from the exact complex-valued dispersion formula in viscoelastic vertical transversely isotropic(VTI) media. Then, we present the hybrid finite-difference and low-rank decomposition(HFDLRD) method to accurately solve our proposed pure-viscoacoustic TTI wave equation. Theoretical analysis and numerical examples suggest that our pure-viscoacoustic TTI wave equation has higher accuracy than previous pure-viscoacoustic TTI wave equations in describing q P-wave kinematic and attenuation characteristics. Additionally, the numerical experiment in a simple two-layer model shows that the HFDLRD technique outperforms the hybrid finite-difference and pseudo-spectral(HFDPS) method in terms of accuracy of wavefield modeling. 展开更多
关键词 Pure-viscoacoustic TTI wave equation Attenuation anisotropy Seismic modeling Low-rank decomposition method
下载PDF
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:1
16
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 Transition metal disulfides Electromagnetic wave absorption Impedance matching Structure engineering modulation
下载PDF
A novel method for simulating nuclear explosion with chemical explosion to form an approximate plane wave: Field test and numerical simulation 被引量:1
17
作者 Wei Ming Xiaojie Yang +3 位作者 Yadong Mao Xiang Wang Manchao He Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2137-2153,共17页
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in... A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion. 展开更多
关键词 Approximate plane wave Multi-hole simultaneous blasting Chemical explosion Nuclear explosion Pressure sensor inclusion
下载PDF
Wave hindcast under tropical cyclone conditions in the South China Sea:sensitivity to wind fields
18
作者 Liqun Jia Shimei Wu +2 位作者 Bo Han Shuqun Cai Renhao Wu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第10期36-53,共18页
Reliable wave information is critical for marine engineering.Numerical wave models are useful tools to obtain wave information with continuous spatiotemporal distributions.However,the accuracy of model results highly ... Reliable wave information is critical for marine engineering.Numerical wave models are useful tools to obtain wave information with continuous spatiotemporal distributions.However,the accuracy of model results highly depends on the quality of wind forcing.In this study,we utilize observations from five buoys deployed in the northern South China Sea from August to September 2017.Notably,these buoys successfully recorded wind field and wave information during the passage of five tropical cyclones of different intensities without sustaining any damage.Based on these unique observations,we evaluated the quality of four widely used wind products,namely CFSv2,ERA5,CCMP,and ERAI.Our analysis showed that in the northern South China Sea,ERA5 performed best compared to buoy observations,especially in terms of maximum wind speed values at 10 m height(U10),extreme U10 occurrence time,and overall statistical indicators.CFSv2 tended to overestimate non-extreme U10 values.CCMP showed favorable statistical performance at only three of the five buoys,but underestimated extreme U10 values at all buoys.ERAI had the worst performance under both normal and tropical cyclone conditions.In terms of wave hindcast accuracy,ERA5 outperformed the other reanalysis products,with CFSv2 and CCMP following closely.ERAI showed poor performance especially in the upper significant wave heights.Furthermore,we found that the wave hindcasts did not improve with increasing spatiotemporal resolution,with spatial resolution up to 0.5°.These findings would help in improving wave hindcasts under extreme conditions. 展开更多
关键词 wave hindcast SWAN tropical cyclone South China Sea
下载PDF
Enhancing electromagnetic wave absorption with core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres 被引量:1
19
作者 Xuewen Jiang Qian Wang +7 位作者 Limeng Song Hongxia Lu Hongliang Xu Gang Shao Hailong Wang Rui Zhang Changan Wang Bingbing Fan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期90-104,共15页
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const... Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2)as the core,MXene as the intermediate layer,and MoS_(2)as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2)nanosheets.Notably,the synergistic combination of SiO_(2)and MoS_(2)with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.” 展开更多
关键词 core‐shell structure electromagnetic wave absorption multiloss mechanism SiO_(2)@MXene@MoS_(2)
下载PDF
The(1+1)-dimensional nonlinear ion acoustic waves in multicomponent plasma containing kappa electrons
20
作者 林麦麦 蒋蕾 王明月 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期416-421,共6页
Large amplitude (1+1)-dimensional nonlinear ion acoustic waves are theoretically studied in multicomponent plasma consisting of positively charged ions and negatively charged ions, ion beam, kappa-distributed electron... Large amplitude (1+1)-dimensional nonlinear ion acoustic waves are theoretically studied in multicomponent plasma consisting of positively charged ions and negatively charged ions, ion beam, kappa-distributed electrons, and dust grains,respectively. By using the Sagdeev potential method, the dynamical system and the Sagdeev potential function are obtained.The important influences of system parameters on the phase diagram of this system are investigated. It is found that the linear waves, the nonlinear waves and the solitary waves are coexistent in the multicomponent plasma system. Meanwhile,the variations of Sagdeev potential with parameter can also be obtained. Finally, it seems that the propagating characteristics of (1+1)-dimensional nonlinear ion acoustic solitary waves and ion acoustic nonlinear shock wave can be influenced by different parameters of this system. 展开更多
关键词 multicomponent plasma nonlinear ion acoustic waves Sagdeev potential method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部