期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Time Domain Signal Analysis Using Wavelet Packet Decomposition Approach 被引量:3
1
作者 M. Y. Gokhale Daljeet Kaur Khanduja 《International Journal of Communications, Network and System Sciences》 2010年第3期321-329,共9页
This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated... This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated. Since wavelet packet decomposition can provide more precise frequency resolution than wavelet decomposition the implementation of one dimensional wavelet packet transform and their usefulness in time signal analysis and synthesis is illustrated. A mother or basis wavelet is first chosen for five wavelet filter families such as Haar, Daubechies (Db4), Coiflet, Symlet and dmey. The signal is then decomposed to a set of scaled and translated versions of the mother wavelet also known as time and frequency parameters. Analysis and synthesis of the time signal is performed around 8 seconds to 25 seconds. This was conducted to determine the effect of the choice of mother wavelet on the time signals. Results are also prepared for the comparison of the signal at each decomposition level. The physical changes that are occurred during each decomposition level can be observed from the results. The results show that wavelet filter with WPA are useful for analysis and synthesis purpose. In terms of signal quality and the time required for the analysis and synthesis, the Haar wavelet has been seen to be the best mother wavelet. This is taken from the analysis of the signal to noise ratio (SNR) value which is around 300 dB to 315 dB for the four decomposition levels. 展开更多
关键词 WPA waveLET packet decomposition (wpd) SNR HAAR
下载PDF
Adaptive Bearing Fault Diagnosis based on Wavelet Packet Decomposition and LMD Permutation Entropy 被引量:1
2
作者 WANG Ming-yue MIAO Bing-rong YUAN Cheng-biao 《International Journal of Plant Engineering and Management》 2016年第4期202-216,共15页
Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which ... Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy 展开更多
关键词 fault diagnosis wavelet packet decomposition wpd local mean decomposition LMD permutation entropy support vector machine (SVM)
下载PDF
Wavelet packet decomposition entropy threshold method for discrete spectrum interferences rejection of on-line partial discharge monitoring
3
作者 唐炬 SUN Caixin +1 位作者 SONG Shengli LI Jian 《Journal of Chongqing University》 CAS 2003年第1期9-12,共4页
The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs ... The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs of equivalent bandwidth filters with different center frequency. The corresponding WPD entropy values of coefficients increase sharply when the discrete spectrum interferences (DSIs), frequency spectrum of which is centered at several frequency points existing in some frequency region. Based on WPD, an entropy threshold method (ETM) is put forward, in which entropy is used to determine whether partial discharge (PD) signals are interfered by DSIs. Simulation and real data processing demonstrate that ETM works with good efficiency, without pre-knowing DSI information. ETM extracts the phase of PD pulses accurately and can calibrate the quantity of single type discharge. 展开更多
关键词 partial discharge(PD) discrete spectrum interference(DSI) wavelet packet decomposition(wpd) ENTROPY
下载PDF
基于ASWPD-BO-GRU的月径流量预测模型 被引量:2
4
作者 唐铭泽 杨银科 张菁雯 《水资源与水工程学报》 CSCD 北大核心 2023年第4期84-91,共8页
为提高月径流量预测精度,并针对传统分解集成径流预测模型错误使用未来数据的问题,提出并建立了基于自适应小波包分解(ASWPD)和贝叶斯优化(BO)的门控循环单元(GRU)月径流量预测模型(ASWPD-BO-GRU)。首先,利用ASWPD对原始月径流量时间序... 为提高月径流量预测精度,并针对传统分解集成径流预测模型错误使用未来数据的问题,提出并建立了基于自适应小波包分解(ASWPD)和贝叶斯优化(BO)的门控循环单元(GRU)月径流量预测模型(ASWPD-BO-GRU)。首先,利用ASWPD对原始月径流量时间序列进行分解,在不使用未来数据的前提下得到4个相对规律的分解子序列,以降低预测难度;然后,利用BO优选分解后的子序列对应的GRU模型超参数;最终,对每个子序列进行预测,将预测结果相加重组得出月径流量预测结果。将提出并建立的模型应用于黑河流域莺落峡水文站月径流量预测中,并与GRU、BO-GRU、WPD-BO-GRU模型(基于传统分解思想对原始月径流量时间序列整体进行分解的预测模型)的预测结果进行对比。结果表明:ASWPD-BO-GRU模型的纳什效率系数(NSE)为0.89,在实例应用中预测精度最高,说明ASWPD-BO-GRU模型在正确分解的前提下具有较高的预测精度和更强的泛化能力。 展开更多
关键词 月径流量预测 自适应动态分解策略 小波包分解 贝叶斯优化 门控循环单元
下载PDF
Wavelet packet energy analysis of laser ultrasonic
5
作者 Chao Sorlg Bin Zheng +2 位作者 Hualing Guo Hui Liu Jing Hou 《光电工程》 CAS CSCD 北大核心 2017年第6期648-658,共11页
关键词 飞机 发动机 叶片 焊接部位
下载PDF
参数优化VMD结合改进小波包阈值的去噪方法
6
作者 张晓莉 黄嘉谞 《噪声与振动控制》 CSCD 北大核心 2024年第5期128-132,共5页
针对轴承信号故障特征容易被噪声淹没的问题,提出一种参数优化变分模态分解结合改进小波包阈值的去噪方法。首先,通过变分模态分解(Variational Mode Decomposition,VMD)结合改进粒子群算法(Improve Particle Swarm Optimization,IPSO)... 针对轴承信号故障特征容易被噪声淹没的问题,提出一种参数优化变分模态分解结合改进小波包阈值的去噪方法。首先,通过变分模态分解(Variational Mode Decomposition,VMD)结合改进粒子群算法(Improve Particle Swarm Optimization,IPSO)将含噪信号分解为若干本征模态分量(Intrinsic Mode Function,IMF)。以最大相关系数-相关峭度为准则,把IMF分为高值分量(High-value Intrinsic Mode Function,HIMF)和低值分量(Low-value Intrinsic Mode Function,LIMF)。再对LIMF进行改进小波包(Improved Wavelet Packet,IWP)阈值去噪。最后对重构信号进行包络解调,提取轴承故障特征频率,完成故障诊断。实验结果表明,该方法不仅能够避免“过扼杀”现象,并且可以得到信噪比更高的去噪信号。 展开更多
关键词 振动与波 变分模态分解 小波包阈值去噪 相关峭度 相关系数 轴承
下载PDF
脑机接口中基于WPD和CSP的特征提取 被引量:27
7
作者 杨帮华 陆文宇 +1 位作者 何美燕 刘丽 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第11期2560-2565,共6页
针对脑机接口(brain computer interface,BCI)中2类运动想象任务的特征提取问题,提出了一种小波包分解(wavelet packet decomposition,WPD)与共同空间模式(common spatial pattern,CSP)相结合的脑电信号特征提取方法。该方法首先选择7... 针对脑机接口(brain computer interface,BCI)中2类运动想象任务的特征提取问题,提出了一种小波包分解(wavelet packet decomposition,WPD)与共同空间模式(common spatial pattern,CSP)相结合的脑电信号特征提取方法。该方法首先选择7个重要导联的脑电(electroencephalograph,EEG)信号,用‘haar’小波基进行三阶WPD分解;然后对每个导联分解后的其中5个子带进行重构,获取相关频域信息;最后对重构后信号利用CSP特征提取,获得六维特征向量。CSP与WPD相结合能够充分利用WPD的时频特性,有效避免CSP要求输入导联数过多、缺乏频域信息等缺陷。对2008年国际BCI竞赛数据和本实验室实验数据,采用该方法进行特征提取,通过概率神经网络(probabilistic neural network,PNN)分类。2种数据源分类正确率分别为92%和80%,相对于单纯的CSP特征提取,正确率分别提高5%和20%。实验结果表明:WPD与CSP相结合的特征提取算法能提取明显的特征,进而提高BCI的识别正确率。 展开更多
关键词 脑机接口 脑电 小波包分解 共同空间模式
下载PDF
基于声发射信号EMD-WPD特征融合的航天器在轨泄漏辨识方法 被引量:5
8
作者 綦磊 梁真馨 +3 位作者 丁红兵 郑悦 芮小博 张宇 《振动与冲击》 EI CSCD 北大核心 2022年第4期110-116,共7页
长期运行在空间环境中的航天器可能由于撞击、振动、老化等因素而发生气体泄漏,在轨泄漏辨识对航天器安全保障具有重要意义。提出了一种基于声发射信号经验模态分解(empirical mode decomposition,EMD)和小波包分解(wavelet packet deco... 长期运行在空间环境中的航天器可能由于撞击、振动、老化等因素而发生气体泄漏,在轨泄漏辨识对航天器安全保障具有重要意义。提出了一种基于声发射信号经验模态分解(empirical mode decomposition,EMD)和小波包分解(wavelet packet decomposition,WPD)特征融合的航天器泄漏辨识方法,首先将声发射信号分别通过EMD和WPD分解成为不同频率范围内的子带信号,考虑能量特征误差与不稳定性,提取信号无量纲因子和频率特征参数并应用Relief F算法选取特征。最后,构建支持向量机(support vector machines,SVM)机器学习数据库,训练泄漏分类模型并利用测试集交叉验证模型分类精度。结果表明,EMD和WPD分解特征并行融合分类模型可显著提高辨识精度,最高可达96.9%,且输入特征数量少,是一种具有应用前景的航天器在轨气体泄漏辨识方法。 展开更多
关键词 真空泄漏 声发射检测 经验模态分解-小波包分解(EMD-wpd)特征融合 支持向量机(SVM)
下载PDF
基于WPD和(2D)~2PCA的步态识别方法 被引量:1
9
作者 杨新武 杨跃伟 翟飞 《北京工业大学学报》 CAS CSCD 北大核心 2013年第7期1059-1064,1071,共7页
为了提高步态识别率,在步态能量图(gait energy image,GEI)基础上,提出了基于小波包分解(waveletpacket decomposition,WPD)和完全主成分分析(two-directional two-dimensional principal component analysis,(2D)2PCA)的步态识别方法.... 为了提高步态识别率,在步态能量图(gait energy image,GEI)基础上,提出了基于小波包分解(waveletpacket decomposition,WPD)和完全主成分分析(two-directional two-dimensional principal component analysis,(2D)2PCA)的步态识别方法.该方法采用基于人体轮廓的GEI来解决步态数据量过大的问题,并采用WPD和(2D)2PCA进行步态特征提取,解决了已有基于小波变换的步态识别方法中高频分量丢失或维数过高问题.在NLPR步态数据库上对该方法进行了评测,并与经典方法进行了比较.实验结果表明:该方法具有更高的识别率和视角变化的鲁棒性. 展开更多
关键词 步态识别 小波包分解 完全主成分分析
下载PDF
WPD和SVM-PSO在微铣刀磨损在线监测中的应用 被引量:2
10
作者 王二化 刘颉 《机械科学与技术》 CSCD 北大核心 2022年第7期1076-1084,共9页
为提高微铣刀磨损状态的预测精度和计算效率,本文提出了一种基于小波包分解(Wavelet packet decomposition,WPD)和支持向量机-粒子群优化(Support vector machine-particle swarm optimization,SVM-PSO)的微铣刀磨损在线监测方法。首先... 为提高微铣刀磨损状态的预测精度和计算效率,本文提出了一种基于小波包分解(Wavelet packet decomposition,WPD)和支持向量机-粒子群优化(Support vector machine-particle swarm optimization,SVM-PSO)的微铣刀磨损在线监测方法。首先根据刀具使用时长和磨损程度将微铣刀磨损分为初始磨损、轻度磨损、中度磨损、重度磨损和刀具失效5种状态;接着对采集到的振动信号进行WPD变换,提取小波包关键节点的能量比和小波包系数峭度作为磨损特征,并分析了不同切削参数对这2个特征的影响;最后利用SVM-PSO模型进行微铣刀磨损状态分类与预测。研究结果表明,和网格搜索法相比,本文提出的微铣刀磨损在线监测方法在计算精度和效率方面具有综合优势,可以为其它刀具磨损监测提供必要的理论基础和实践指导。 展开更多
关键词 微铣刀磨损 振动信号 小波包分解 支持向量机 粒子群优化
下载PDF
面向人脸识别的WPD-HOG金字塔特征提取方法 被引量:4
11
作者 刘文培 李凤莲 +1 位作者 张雪英 田玉楚 《计算机工程与应用》 CSCD 北大核心 2018年第22期150-155,共6页
人脸识别技术可应用于各监控和安保领域,它涉及特征提取、识别模型等关键技术。其中特征提取方法直接影响识别效果,目前所用的特征提取方法存在特征表达不全面、计算复杂度高等问题。据此,提出一种基于WPDHOG金字塔的人脸特征提取方法,... 人脸识别技术可应用于各监控和安保领域,它涉及特征提取、识别模型等关键技术。其中特征提取方法直接影响识别效果,目前所用的特征提取方法存在特征表达不全面、计算复杂度高等问题。据此,提出一种基于WPDHOG金字塔的人脸特征提取方法,该方法结合小波包分解(Wavelet Packet Decomposition,WPD)、图像金字塔以及方向梯度直方图(Histograms of Oriented Gradients,HOG)对人脸图像特征进行有效表征,最终将WPD-HOG金字塔特征通过SVM分类器进行分类。通过在ORL人脸库上进行实验,与四种对比方法 HOG、HOG金字塔、FWPD-HOG以及FWPD-HOG金字塔进行比较,实验结果表明,WPD-HOG金字塔特征提取方法的识别率要高于对比方法,且在噪声方面具有较好的鲁棒性。 展开更多
关键词 人脸识别特征提取 小波包分解 图像金字塔 方向梯度直方图
下载PDF
基于WPD-PSO-ESN的短期交通流预测 被引量:15
12
作者 万玉龙 李新春 周红标 《公路交通科技》 CAS CSCD 北大核心 2019年第8期144-151,共8页
为了提高短期交通流的预测精度,提出了一种基于小波包分解(wavelet packet decomposition,WPD)、粒子群优化(particle swarm optimization,PSO)算法和回声状态网(echo state network,ESN)的短期交通流预测方法。该方法命名为WPD-PSO-ES... 为了提高短期交通流的预测精度,提出了一种基于小波包分解(wavelet packet decomposition,WPD)、粒子群优化(particle swarm optimization,PSO)算法和回声状态网(echo state network,ESN)的短期交通流预测方法。该方法命名为WPD-PSO-ESN。首先,在数据预处理阶段,采用小波包分解将交通流数据分解为不同频段的子序列,并将各子序列送入回声状态网预测模型;然后,在建立预测模型阶段,利用粒子群优化算法在线优化回声状态网的参数,以提高回声状态网的泛化能力和预测精度;进一步,针对粒子群优化算法存在的早熟收敛和易陷入局部最优的缺陷,通过检测粒子飞行过程中的状态信息,设计了惯性权重自适应调整策略,以期提高粒子群优化算法的寻优能力;最后,在结果输出阶段,采用加权平均法融合各子序列的预测值以得到模型的最终预测结果。试验结果表明:通过小波包分解和单支重构可以更加容易地抓住原始信号中的动态信息,更适合用于回声状态网的时间序列建模;带有自适应惯性权重调整策略的粒子群优化算法具备更强的跳出局部最优的能力,优化后的回声状态网模型精度更高;对于短期交通流预测,与前馈型误差反传神经网络、反馈型Elman神经网络和传统回声状态网等预测方法相比,WPD-PSO-ESN预测方法具有更高的预测精度,能够满足智能交通系统对预测精度的需求,对实现实时交通控制和建设智能交通系统具有重要意义。 展开更多
关键词 城市交通 时间序列预测 回声状态网络 小波包分解 粒子群优化 短期交通流
下载PDF
基于WPD和LPP的设备故障诊断方法研究 被引量:11
13
作者 丁晓喜 何清波 《振动与冲击》 EI CSCD 北大核心 2014年第3期89-93,共5页
小波包分解(WPD)能够将非平稳信号在低频和高频上同时分解以有效反映信号潜在的特征信息,而局部保留投影法(LPP)在降维的同时保留了信号的局部特征信息。结合上述特点,给出了选取信号小波包分解后形成全部节点的谱能量,作为表征信号的特... 小波包分解(WPD)能够将非平稳信号在低频和高频上同时分解以有效反映信号潜在的特征信息,而局部保留投影法(LPP)在降维的同时保留了信号的局部特征信息。结合上述特点,给出了选取信号小波包分解后形成全部节点的谱能量,作为表征信号的特征,采用LPP提取降维特征进行模式识别的方法进行设备故障分类研究。在多组不同轴承故障及同故障不同损伤程度的多类别数据集上进行了实验,实验结果验证了这种方法的有效性。 展开更多
关键词 故障诊断 特征提取 小波包分解 局部保留投影 高斯混合模型
下载PDF
基于WPD-FWEO的轴承故障特征增强方法 被引量:2
14
作者 丁金玲 胡俊锋 林凤涛 《机床与液压》 北大核心 2020年第11期194-199,共6页
用小波包分解(Wavelet Packet Decomposition,WPD)处理低信噪比信号时,常出现残存大量带内噪声的问题,严重影响了后期的故障诊断准确性。针对该问题,提出将频率加权能量算子(Frequency-Weighted Energy Operator,FWEO)作为小波包分解的... 用小波包分解(Wavelet Packet Decomposition,WPD)处理低信噪比信号时,常出现残存大量带内噪声的问题,严重影响了后期的故障诊断准确性。针对该问题,提出将频率加权能量算子(Frequency-Weighted Energy Operator,FWEO)作为小波包分解的后处理器,以消除其带内噪声,增强故障特征提取效果。对采样获得的故障数据进行3层小波包分解,得到各频带系数;对每个频带系数进行峭度计算,以峭度最大原则获取最优频带系数;以频率加权能量算子追踪最优频带系数的瞬时能量,从信号能量的角度消除信号中的带内噪声成分,二次增强信号中隐藏的故障脉冲信息;对其进行包络谱分析,得到最终诊断结果。仿真数据、实验室数据和工程数据验证了所提方法的有效性和实用性。 展开更多
关键词 小波包分解 频率加权能量算子 峭度 故障诊断
下载PDF
基于WPD和LPP的设备故障诊断方法研究 被引量:5
15
作者 丁晓喜 何清波 《新型工业化》 2013年第7期40-49,共10页
小波包分解(WPD)能够将非平稳信号在低频和高频上同时形成特征信息,有效的反映出信号潜在的特征,而局部保留投影法(LPP)在降维的同时保留了信号的局部特征信息,结合上述特点,本文给出了选取信号4层小波包分解后形成全部节点的谱能量,作... 小波包分解(WPD)能够将非平稳信号在低频和高频上同时形成特征信息,有效的反映出信号潜在的特征,而局部保留投影法(LPP)在降维的同时保留了信号的局部特征信息,结合上述特点,本文给出了选取信号4层小波包分解后形成全部节点的谱能量,作为表征信号的特征,采用LPP提取特征降维进行模式识别这种方法。在多组轴承的不同故障、同故障不同损伤程度的多类别数据集上进行了实验,比较识别精度,实验结果验证了这种方法的有效性。 展开更多
关键词 故障诊断 特征提取 识别精度 小波包分解 局部保留投影法 高斯混合模型
下载PDF
Identification of Grinding Wheel Wear Signature by a Wavelet Packet Decomposition Method 被引量:6
16
作者 许黎明 许开州 柴运东 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第3期323-328,共6页
Grinding is known as the most complicated material removal process and the method for monitoring the grinding wheel wear has its own characteristics comparing with the approaches for detecting the wear on regular cutt... Grinding is known as the most complicated material removal process and the method for monitoring the grinding wheel wear has its own characteristics comparing with the approaches for detecting the wear on regular cutting tools.Research efforts were made to develop the wheel wear monitoring system due to its significance in grinding process.This paper presents a novel method for identification of grinding wheel wear signature by combination of wavelet packet decomposition(WPD) based energies.The distinctive feature of the method is that it takes advantage of the combinational information of the decomposed frequency components based on the WPD so the extracted features can be customized according to the specific monitored object to get better diagnosis effects.Experiments are researched on monitoring of grinding wheel wear states under different machining conditions.The results show that the energy ratio extracted from the measured vibration signals is consistent with the grinding wheel wear condition evaluated by experiment and the further extracted feature ratio can be used in prediction of wheel wear condition. 展开更多
关键词 grinding wheel wear VIBRATION feature extraction wavelet packet decomposition(wpd)
原文传递
基于CSP与WPD算法的脑磁信号特征提取研究 被引量:1
17
作者 李广勇 黄晓霞 《现代计算机》 2015年第12期3-6,19,共5页
针对两类人(精神病患者和正常人)的静息态脑磁信号(MEG)的分类问题,提出一种小波包分解(WPD)和共空间模式(CSP)相结合的特征提取方法。利用小波包对训练集的多路脑磁信号进行分解,再利用共空间模式算法对不同分解层子带的脑磁信号进行... 针对两类人(精神病患者和正常人)的静息态脑磁信号(MEG)的分类问题,提出一种小波包分解(WPD)和共空间模式(CSP)相结合的特征提取方法。利用小波包对训练集的多路脑磁信号进行分解,再利用共空间模式算法对不同分解层子带的脑磁信号进行特征提取,使用经典的K近邻算法进行特征值分类。仿真实验结果表明,使用低频段(0Hz^4.7Hz)的脑磁信号进行CSP分解,选择5个特征值进行分类,可以得到高达91.7%的正确率。实验证明该方法提取的特征比较明显,是脑磁信号特征提取的新思路。 展开更多
关键词 静息态 脑磁信号 共空间模式 小波包 K近邻分类器
下载PDF
基于WPD_EMD和SVM刀具磨损故障诊断模型 被引量:1
18
作者 魏帅充 王红军 +1 位作者 王茂 王倪珂 《机械工程师》 2017年第11期67-70,共4页
通过采集2种磨损程度不同的同类型刀具加工工件时机床主轴的振动信号,提出WPD_EMD和SVM故障诊断模型判断刀具磨损程度。首先利用小波包工具去除高频噪声信号,其次利用EMD分解得到若干个固有模态函数和一个残差,计算各个固有模态函数和EM... 通过采集2种磨损程度不同的同类型刀具加工工件时机床主轴的振动信号,提出WPD_EMD和SVM故障诊断模型判断刀具磨损程度。首先利用小波包工具去除高频噪声信号,其次利用EMD分解得到若干个固有模态函数和一个残差,计算各个固有模态函数和EMD分解前信号的相关系数,合并相关系数大的固有模态函数得到新信号。计算新信号的绝对均值作为时域特征参数。选取若干组试验数据作为支持向量机训练集,建立判断刀具磨损程度大小的故障诊断模型。试验表明该故障模型预测刀具磨损程度准确率100%,为判断刀具实时加工工件的磨损程度提供新的途径。 展开更多
关键词 刀具磨损 故障诊断模型 小波包分解 EMD 相关系数 SVM
下载PDF
混合WPD和ACPSO的负荷预测模型
19
作者 匡卫洪 董朕 《电气自动化》 2017年第3期68-71,共4页
为了解决传统BP神经网络对负荷高频分量预测精度不高、泛化能力弱的缺点以及粒子群算法(PSO)在解决高维、多模复杂问题时容易陷入局部最优的问题,提出了一种混合小波包变换和自适应交叉粒子群算法(ACPSO)优化神经网络的短期负荷预测新... 为了解决传统BP神经网络对负荷高频分量预测精度不高、泛化能力弱的缺点以及粒子群算法(PSO)在解决高维、多模复杂问题时容易陷入局部最优的问题,提出了一种混合小波包变换和自适应交叉粒子群算法(ACPSO)优化神经网络的短期负荷预测新方法。通过小波包变换对负荷样本进行多层序列分解,对单支重构所得的负荷子序列采用自适应交叉粒子群算法优化的神经网络进行预测。最后叠加各子序列的预测值,得出实际预测结果。通过实际电网负荷预测表明,新模型能充分掌握负荷波动的变化规律,有效提高负荷波动大的地区的预测精度,且预测模型具有较强泛化能力。 展开更多
关键词 小波包分解 自适应交叉粒子群算法 高频分量 神经网络 负荷预测
下载PDF
基于小波包分解-峭度值指标-希尔伯特包络解调融合方法处理声发射信号的滚动轴承故障诊断 被引量:9
20
作者 沙云东 陈兴武 +2 位作者 栾孝驰 赵宇 李壮 《科学技术与工程》 北大核心 2023年第21期9315-9323,共9页
为实现对航空发动机主轴承进行故障诊断,以复杂传递路径下声发射信号的波形分析为基础,提出一种基于小波包分解(wavelet packet decomposition, WPD)、峭度值指标(kurtosis index, KI)以及希尔伯特包络解调(Hilbert envelope demodulati... 为实现对航空发动机主轴承进行故障诊断,以复杂传递路径下声发射信号的波形分析为基础,提出一种基于小波包分解(wavelet packet decomposition, WPD)、峭度值指标(kurtosis index, KI)以及希尔伯特包络解调(Hilbert envelope demodulation, HED)相结合的滚动轴承故障特征信息提取方法。采用WPD方法对滚动轴承声发射信号分解获得节点分量,基于KI对节点分量排序筛选进行信号重构,进而对重构信号进行HED分析,提取出轴承故障特征频率用于对比诊断。开展简单以及复杂传递路径下滚动轴承故障模拟试验,采用建立的方法分别针对滚动轴承外圈、内圈典型故障试验数据进行分析和诊断。结果表明:该方法可有效提取滚动轴承故障特征频率及其倍频,且针对复杂传递路径下处于工作状态的滚动轴承,仍可实现精准的特征信息提取和有效的故障诊断。 展开更多
关键词 滚动轴承 故障诊断 声发射信号 小波包分解(wpd) 峭度值指标(KI) 希尔伯特包络解调(HED)
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部