Wave and longshore current interaction was examined based on the numerical models.In these models,water waves in the presence of longshore currents were modeled by parabolic mild slope equation,and wave breaking induc...Wave and longshore current interaction was examined based on the numerical models.In these models,water waves in the presence of longshore currents were modeled by parabolic mild slope equation,and wave breaking induced longshore currents were modeled by shallow water equation.Water wave provided the radiation stress gradients to drive current.Wave and longshore current interactions were considered by cycling the wave and longshore current models to a steady state.The experiments for regular and irregular breaking wave induced longshore currents by Hamilton and Ebersole (2001) and Reniers and Battjes (1997) were simulated.The numerical results indicate that the present models are effective for simulating the interaction of wave and breaking wave induced longshore currents,and the numerically simulated longshore current at wave breaking point considering wave and longshore current interaction show some disagreement with those neglecting the wave-current interaction,and the breaking wave induced longshore current effect on wave transformation is not obvious.展开更多
Using the linear wave theory, the distributions of the wave induced excess momentum fluxes over depth at the arbitrary wave angle and their asymptotic forms for deep and shallow water are developed. Results indicate ...Using the linear wave theory, the distributions of the wave induced excess momentum fluxes over depth at the arbitrary wave angle and their asymptotic forms for deep and shallow water are developed. Results indicate that the distribution of the wave induced excess momentum fluxes over depth is non uniform and the contributions of the component below the wave trough to the total momentum fluxes become considerable in shallow water. On the basis of the Navier Stokes equations, the simplified three dimensional mathematical model is established by taking a phase average over a wavelength. It is found that there are the terms of the wave induced excess momentum fluxes varying over depth in the model, which illustrates the situation of wave current interactions and the vertical structure of current velocity are changed because of different wave induced excess momentum fluxes at various vertical location. The finite difference method is employed to solve the simplified model. Performances of the two dimensional vertically integrated equations are evaluated against available numerical and experimental results including the cases of wave set up on a plane beach, longshore current due to an oblique wave, wave induced nearshore circulation in a semi enclosed seas, and wave current interactions. All cases yield satisfactory agreements. The three dimensional mathematical model is applied to the numerical simulation of wave current interactions, and it performs well in predicting the vertical velocity structure and the plane flow field.展开更多
This paper concerns the generation of forced and free long waves. The free long waves are due to uneven bottoms and ambient currents. The pure wave evolution equation of Liu & Dingemans is extended to include the ...This paper concerns the generation of forced and free long waves. The free long waves are due to uneven bottoms and ambient currents. The pure wave evolution equation of Liu & Dingemans is extended to include the effects of strong ambient currents, leading to more general third order governing equations for the evolution of the envelope of the short waves and for the generation and scattering of the long waves.展开更多
基金The National Natural Science Foundation of China under contract Nos 50839001,51179025 and 50709004the Specialized Research Fund for the Doctoral Program of Higher Education of China under contract No.20070141032
文摘Wave and longshore current interaction was examined based on the numerical models.In these models,water waves in the presence of longshore currents were modeled by parabolic mild slope equation,and wave breaking induced longshore currents were modeled by shallow water equation.Water wave provided the radiation stress gradients to drive current.Wave and longshore current interactions were considered by cycling the wave and longshore current models to a steady state.The experiments for regular and irregular breaking wave induced longshore currents by Hamilton and Ebersole (2001) and Reniers and Battjes (1997) were simulated.The numerical results indicate that the present models are effective for simulating the interaction of wave and breaking wave induced longshore currents,and the numerically simulated longshore current at wave breaking point considering wave and longshore current interaction show some disagreement with those neglecting the wave-current interaction,and the breaking wave induced longshore current effect on wave transformation is not obvious.
文摘Using the linear wave theory, the distributions of the wave induced excess momentum fluxes over depth at the arbitrary wave angle and their asymptotic forms for deep and shallow water are developed. Results indicate that the distribution of the wave induced excess momentum fluxes over depth is non uniform and the contributions of the component below the wave trough to the total momentum fluxes become considerable in shallow water. On the basis of the Navier Stokes equations, the simplified three dimensional mathematical model is established by taking a phase average over a wavelength. It is found that there are the terms of the wave induced excess momentum fluxes varying over depth in the model, which illustrates the situation of wave current interactions and the vertical structure of current velocity are changed because of different wave induced excess momentum fluxes at various vertical location. The finite difference method is employed to solve the simplified model. Performances of the two dimensional vertically integrated equations are evaluated against available numerical and experimental results including the cases of wave set up on a plane beach, longshore current due to an oblique wave, wave induced nearshore circulation in a semi enclosed seas, and wave current interactions. All cases yield satisfactory agreements. The three dimensional mathematical model is applied to the numerical simulation of wave current interactions, and it performs well in predicting the vertical velocity structure and the plane flow field.
文摘This paper concerns the generation of forced and free long waves. The free long waves are due to uneven bottoms and ambient currents. The pure wave evolution equation of Liu & Dingemans is extended to include the effects of strong ambient currents, leading to more general third order governing equations for the evolution of the envelope of the short waves and for the generation and scattering of the long waves.