Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to util...Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.展开更多
The paper introduces the important developments of Wave Energy Converters (WECs) in the UK, and the generic an- chor types for WECs and similar structures. Several WECs and their characteristics are introduced to expl...The paper introduces the important developments of Wave Energy Converters (WECs) in the UK, and the generic an- chor types for WECs and similar structures. Several WECs and their characteristics are introduced to explain the development direction. The anchors are discussed in relation to the behaviour and performance of WECs, and comparisons are made with simi- lar aspects of the offshore industry. Typical and desirable features of anchors for WECs are summarized. Additionally, expectations and research suggestions for WECs and their anchor design are presented.展开更多
This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, a...This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method(a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest–trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.展开更多
This paper describes the physical model testing of a wave energy converter (WEC) undertaken in the Heriot-Watt wave basin during October 2010 as part of the SUPERGEN2 project funded by the British government,and provi...This paper describes the physical model testing of a wave energy converter (WEC) undertaken in the Heriot-Watt wave basin during October 2010 as part of the SUPERGEN2 project funded by the British government,and provides a preliminary analysis of the extreme mooring loads.Tests were completed at 1/20 scale on a single oscillating water column device deployed with a 3-line taut mooring configuration.The model was fully instrumented with mooring line load cells and an optical motion tracker.The tests were preceded by calibration of instrumentation and the wave test environment,and carried out in long crested waves regimes with 12 combinations of peak period T p and significant wave height H s.The main objective for these experiments was to examine the effect of shape and size of the tethered buoy on the leading mooring line on the maximum mooring loads and the excursion of the device.Comparison of the loads at different configurations of the tethered buoy suggests that the results are consistent with the hypothesis that the mooring forces should depend on the change in stiffness of the mooring system.In particular,the results indicate that with the spectral peak period close to the natural period of the moored device of 8 s,peak loads in a configuration with a smaller buoy may be considerably higher than those with a larger buoy.However,when T p was dissimilar,a harder mooring with a smaller spherical buoy appears to result in lower peak loads.The exact configuration should,therefore,be chosen according to the prevalent conditions of any particular location,and will also depend on the design and expected maintenance schedule,as well as matters related to the risk to navigation,environmental effects and the conservation status of the area.展开更多
The 21st Century Maritime Silk Road is a profound measure for mankind,whilst its development is severely restricted by the energy shortage of surrounding countries.As the core construction area of Maritime Silk Road,t...The 21st Century Maritime Silk Road is a profound measure for mankind,whilst its development is severely restricted by the energy shortage of surrounding countries.As the core construction area of Maritime Silk Road,the North Indian Ocean is rich in wave energy.The development and utilization of wave energy not only can overcome energy shortage,but also promote communication between peripheral countries.However,previous researchers often focused on wave energy itself,without combining devices to analyze wave energy resources.Therefore,we conducted an overall assessment of wave energy resources using 20-year ERA5 data and determined the sites considered as superior for the construction of Wave Energy Farm(WEF)in the coastal areas.In order to point out which type of Wave Energy Converter(WEC)is best suited for the sites,we carried out the performance evaluation of eight advanced WECs using three parameters:the mean power output,the capacity factor and the capture width ratio.The results show that the performance of Wave Star is superior to other devices,which is supposed to be the primary consideration of the Wave Energy Farms(WEFs)in the future.展开更多
A flap-type wave energy converter(WEC) is combined with a nearshore breakwater to expand the application of WECs both economically and environmentally. Based on the linear potential theory, an eigenfunction expansion ...A flap-type wave energy converter(WEC) is combined with a nearshore breakwater to expand the application of WECs both economically and environmentally. Based on the linear potential theory, an eigenfunction expansion solution is developed for a periodic row of bottom-hinged flap-type WECs exposed to normal waves. Additionally, the viscous effect is considered using the ship rolling solution method with a viscous damping term included in the equation of motion, and the viscous damping expression is also described. The proposed solution is verified by comparison with published literatures. The results including the wave energy conversion efficiency, the reflected and transmitted proportion of the incident wave energy are presented for a range of wave periods and geometric ratios. It is demonstrated that better wave protection effects can be attained with smaller gaps between the WECs, where the transmitted proportion of the incident wave energy is lower. An optimal geometric ratio thus exists for a given wave power absorption and a specific wave period.展开更多
Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentia...Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.展开更多
A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the line...A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.展开更多
A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been cond...A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been conducted to investigate the design of the rafts.The effects of different parameters(wave parameters,structural parameters and PTO parameters)on the hydrodynamic characteristics of the attenuator-type WEC were studied in detail.The results show that in terms of wave parameters,there is an optimal wave period,which makes the relative pitching angle amplitude of the WEC reach the maximum,and the increase of wave height is conducive to the relative pitching angle amplitude of wave energy.Under different wave conditions,the relative pitch angle of the parallelogram raft device is the maximum.In terms of structural parameters,the parallelogram attenuator-type device has the optimal values in different relative directions,different distances and different apex angle,which makes the relative motion amplitude of the device reach the maximum,and the spacing and the apex angle have influence on the motion frequency of the device,while the relative direction has almost no influence on it.In terms of PTO parameters,there is an optimal damping coefficient,which makes the power generation efficiency of the WEC reach the maximum.The research results provide a valuable reference for future research and design of the attenuator-type WEC.展开更多
As an important wave energy converter(WEC),the double-buoy device has advantages of wider energy absorption band and deeper water adaptability,which attract an increasing number of attentions from researchers.This pap...As an important wave energy converter(WEC),the double-buoy device has advantages of wider energy absorption band and deeper water adaptability,which attract an increasing number of attentions from researchers.This paper makes an in-depth study on double-buoy WEC,by means of the combination of model experiment and numerical simulation.The Response Amplitude Operator(RAO)and energy capture of the double-buoy under constant power take-off(PTO)damping are investigated in the model test,while the average power output and capture width ratio(CWR)are calculated by the numerical simulation to analyze the influence of the wave condition,PTO,and the geometry parameters of the device.The AQWA-Fortran united simulation sy stem,including the secondary developme nt of AQWA software coupled with the flowchart of the Fortran code,models a new dynamic system.Various viscous damping and hydraulic friction from WEC system are measured from the experimental results,and these values are added to the equation of motion.As a result,the energy loss is contained in the final numerical model the by united simulation system.Using the developed numerical model,the optimal period of energy capture is identified.The power capture reaches the maximum value under the outer buoy's natural period.The paper gives the peak value of the energy capture under the linear PTO damping force,and calculates the optimal mass ratio of the device.展开更多
Latching control is considered to be an effective way to improve the energy absorption of a wave energy converter(WEC).Recently, a latching control method was realized in a hydraulic power take-off(PTO) system and was...Latching control is considered to be an effective way to improve the energy absorption of a wave energy converter(WEC).Recently, a latching control method was realized in a hydraulic power take-off(PTO) system and was demonstrated to be effective in one-body WECs. However, the effectiveness of latching control for two-body WECs still needs to be tested. In this paper, a feedback latching controller is proposed for a conceptual two-body WEC. In this conceptual design, a permanent-magnet linear generator(PMLG) is adopted as the PTO system, and a pure water hydraulic cylinder system is designed for performing the latching control. A feedback control strategy based on the measurement of latching force is established, formulated and tested numerically under realistic irregular wave conditions. The effects of the wave peak period and the PTO damping coefficient on the effectiveness of the latching control is also investigated. The results indicate that the proposed feedback latching control is effective for improving the annual power absorption of the two-body WEC. Furthermore, compared to another latching control,the proposed control is more practical because it does not require any knowledge of the wave conditions or the dynamics of the whole WEC system.展开更多
Harvesting the energy from ocean waves is one of the greatest attractions for energy engineers and scientists. Till date, plenty of methods have been adopted to harvest the energy from the ocean waves. However, due to...Harvesting the energy from ocean waves is one of the greatest attractions for energy engineers and scientists. Till date, plenty of methods have been adopted to harvest the energy from the ocean waves. However, due to technological and economical complexity, it is intricate to involve the majority of these energy harvesters in the real ocean environment. Effective utilization and sustain- ability of any wave energy harvester depend upon its adaptability in the irregular seasonal waves, situation capability in maximum energy extraction and finally fulfilling the economic barriers. In this paper, the front end energy conversions are reviewed in detail which is positioned in the first stage of the wave energy converter among other stages such as power take off (PTO) and electrical energy conversion. If the recent development of these front end energy conversion is well known then developing wave energy converter with economic and commercial viability is possible. The aim of this review is to provide information on front end energy conversion of a point absorber and emphasize the strategies and calamity to be considered in designing such kinds of devices to improve the energy harvesting competence. This will be useful to the engineers for speeding up the development of a matured point absorbing type wave energy converter.展开更多
The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predic...The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predicted by incorporating a second order random wave model into a nonlinear dynamic filter.This is a new approach,and,as the second order random wave model can be utilized to accurately simulate the nonlinear waves in an irregular sea,avoids the inaccuracies resulting from using a first order linear wave model in the simulation process.The predicted results have been systematically analyzed and compared,and the advantages of using this new approach have been convincingly substantiated.展开更多
This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave mo...This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.展开更多
Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient ...Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient power supply modes is one of the technical bottlenecks restricting the effective utilisation of this type of equipment.In this work,the performance characteristics of a new type of elastic-blade/wave-energy converter(EBWEC)and its core energy conversion component(named wave energy absorber)are comprehensively studied.In particular,computational fluid dynamics(CFD)simulations and experiments have been used to analyze the hydrodynamics and performance characteristics of the EBWEC.The pressure cloud diagrams relating to the surface of the elastic blade were obtained through two-way fluid-solid coupling simulations.The influence of blade thickness and relative speed on the performance characteristics of EBWEC was analyzed accordingly.A prototype of the EBWEC and its bucket test platform were also developed.The power characteristics of the EBWEC were analyzed and studied by using the blade thickness and motion cycle as control variables.The present research shows that the EBWEC can effectively overcome the performance disadvantages related to the transmission shaft torque load and power curve fluctuations of rigid blade wave energy converters(RBWEC).展开更多
This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular wa...This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves’ behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method’s efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.展开更多
The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodi...The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodies and the floating central platform capture multi-point wave energy simultaneously. The converter was simplified as a forced vibration system with three degrees of freedom, namely two heave motions and one rotational motion. The expressions of the amplitude-frequency response and the wave energy capture width were deduced from the motion equations of the converter. Based on the built mathematical model, the effects of the PTO damping coefficient, the PTO elastic coefficient, the connection length between the oscillating body and central platform, and the total number of oscillating bodies on the performance of the wave energy converter were investigated. Numerical results indicate that the dynamical properties and the energy conversion efficiency are related not only to the incident wave circle frequency but also to the converter’s physical parameters and interior PTO coefficients. By adjusting the connection length, higher wave energy absorption efficiencies can be obtained. More oscillating bodies installed result in more stable floating central platform and higher wave energy conversion efficiency.展开更多
The wave energy resource around the coasts of Taiwan is investigated with wave buoy data covering a 3-year period (2007-2009). Eleven study sites within the region bounded by the 21.5^°N-25.5°N latitudes a...The wave energy resource around the coasts of Taiwan is investigated with wave buoy data covering a 3-year period (2007-2009). Eleven study sites within the region bounded by the 21.5^°N-25.5°N latitudes and 118°E-122°E longitudes are selected for analysis. The monthly moving-average filter is used to obtain the low-frequency trend based on the available hourly data. After quantifying the wave power and annual wave energy, the substantial resource is the result of Penghu buoy station, which is at the northeastern side of Penghu Island in the Taiwan Strait. it is investigated that the Penghu sea area is determined to be the optimal place for wave energy production according to its abundant resource of northeasterly monsoon waves, sheltering of the Taiwan Island, operation and maintenance in terms of seasonal conditions, and constructability of wave power devices.展开更多
According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple ...According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture.展开更多
Many of the existing wave energy converters (WEC) are of oscillating water column (OWC) and point absorber (PA) types. Fewer references have been published in public on the pendulum type WEC. A series of experim...Many of the existing wave energy converters (WEC) are of oscillating water column (OWC) and point absorber (PA) types. Fewer references have been published in public on the pendulum type WEC. A series of experimental tests on a bottom-hinged pendulum WEC model are carded out and some results are revealed in the present study. The purpose of this paper is to present a detailed description of the tests. It is found that wave energy conversion efficiency varies with the applied damping and wave conditions. In addition, special attention is given to the effect of the water ballast on the efficiency of the wave energy converter. It is demonstrated that the ballast plays an important role in energy extraction. Better understanding on how the performance of the device is influenced by damping, wave height, wave period and ballast is shown.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52171289,42176210,and 52201330)the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2022B1515250005)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311023014).
文摘Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.
文摘The paper introduces the important developments of Wave Energy Converters (WECs) in the UK, and the generic an- chor types for WECs and similar structures. Several WECs and their characteristics are introduced to explain the development direction. The anchors are discussed in relation to the behaviour and performance of WECs, and comparisons are made with simi- lar aspects of the offshore industry. Typical and desirable features of anchors for WECs are summarized. Additionally, expectations and research suggestions for WECs and their anchor design are presented.
基金supported by the State Key Laboratory of Ocean Engineering of China(Grant GKZD010038)
文摘This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method(a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest–trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.
基金Funded by the UK Engineering and Physical Sciences Research Council under the grant EP/E040136/1
文摘This paper describes the physical model testing of a wave energy converter (WEC) undertaken in the Heriot-Watt wave basin during October 2010 as part of the SUPERGEN2 project funded by the British government,and provides a preliminary analysis of the extreme mooring loads.Tests were completed at 1/20 scale on a single oscillating water column device deployed with a 3-line taut mooring configuration.The model was fully instrumented with mooring line load cells and an optical motion tracker.The tests were preceded by calibration of instrumentation and the wave test environment,and carried out in long crested waves regimes with 12 combinations of peak period T p and significant wave height H s.The main objective for these experiments was to examine the effect of shape and size of the tethered buoy on the leading mooring line on the maximum mooring loads and the excursion of the device.Comparison of the loads at different configurations of the tethered buoy suggests that the results are consistent with the hypothesis that the mooring forces should depend on the change in stiffness of the mooring system.In particular,the results indicate that with the spectral peak period close to the natural period of the moored device of 8 s,peak loads in a configuration with a smaller buoy may be considerably higher than those with a larger buoy.However,when T p was dissimilar,a harder mooring with a smaller spherical buoy appears to result in lower peak loads.The exact configuration should,therefore,be chosen according to the prevalent conditions of any particular location,and will also depend on the design and expected maintenance schedule,as well as matters related to the risk to navigation,environmental effects and the conservation status of the area.
基金supported by the National Key R&D Program of China(Grant No.2017YFC1405600)the National Natural Science Foundation of China(Grant No.61931025)Shandong Institute of Chinese Engineering S&T Strategy for Development(Grant No.2022-DFZD-36).
文摘The 21st Century Maritime Silk Road is a profound measure for mankind,whilst its development is severely restricted by the energy shortage of surrounding countries.As the core construction area of Maritime Silk Road,the North Indian Ocean is rich in wave energy.The development and utilization of wave energy not only can overcome energy shortage,but also promote communication between peripheral countries.However,previous researchers often focused on wave energy itself,without combining devices to analyze wave energy resources.Therefore,we conducted an overall assessment of wave energy resources using 20-year ERA5 data and determined the sites considered as superior for the construction of Wave Energy Farm(WEF)in the coastal areas.In order to point out which type of Wave Energy Converter(WEC)is best suited for the sites,we carried out the performance evaluation of eight advanced WECs using three parameters:the mean power output,the capacity factor and the capture width ratio.The results show that the performance of Wave Star is superior to other devices,which is supposed to be the primary consideration of the Wave Energy Farms(WEFs)in the future.
基金Supported by the National Natural Science Foundation of China(No.51409105)State Key Laboratory of Ocean Engineering Shanghai Jiao Tong University(No.1408)Guangdong Provincial Department of Science and Technology(No.2015A020216005)
文摘A flap-type wave energy converter(WEC) is combined with a nearshore breakwater to expand the application of WECs both economically and environmentally. Based on the linear potential theory, an eigenfunction expansion solution is developed for a periodic row of bottom-hinged flap-type WECs exposed to normal waves. Additionally, the viscous effect is considered using the ship rolling solution method with a viscous damping term included in the equation of motion, and the viscous damping expression is also described. The proposed solution is verified by comparison with published literatures. The results including the wave energy conversion efficiency, the reflected and transmitted proportion of the incident wave energy are presented for a range of wave periods and geometric ratios. It is demonstrated that better wave protection effects can be attained with smaller gaps between the WECs, where the transmitted proportion of the incident wave energy is lower. An optimal geometric ratio thus exists for a given wave power absorption and a specific wave period.
基金financially supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant No.2022R1I1A1A01069442)the 2024 Hongik University Research Fund。
文摘Salter's duck,an asymmetrical wave energy converter(WEC)device,showed high efficiency in extracting energy from 2D regular waves in the past;yet,challenges remain for fluctuating wave conditions.These can potentially be addressed by adopting a negative stiffness mechanism(NSM)in WEC devices to enhance system efficiency,even in highly nonlinear and steep 3D waves.A weakly nonlinear model was developed which incorporated a nonlinear restoring moment and NSM into the linear formulations and was applied to an asymmetric WEC using a time domain potential flow model.The model was initially validated by comparing it with published experimental and numerical computational fluid dynamics results.The current results were in good agreement with the published results.It was found that the energy extraction increased in the range of 6%to 17%during the evaluation of the effectiveness of the NSM in regular waves.Under irregular wave conditions,specifically at the design wave conditions for the selected test site,the energy extraction increased by 2.4%,with annual energy production increments of approximately 0.8MWh.The findings highlight the potential of NSM in enhancing the performance of asymmetric WEC devices,indicating more efficient energy extraction under various wave conditions.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20242,52271260,52001054)Natural Science Foundation of Liaoning Province(Grant No.2021-BS-060)Fundamental Research Funds for the Central Universities(Grant No.DUT23RC(3)017)。
文摘A multi-chamber oscillating water column wave energy converter(OWC-WEC)integrated to a breakwater is investigated.The hydrodynamic characteristics of the device are analyzed using an analytical model based on the linear potential flow theory.A pneumatic model is employed to investigate the relationship between the air mass flux in the chamber and the turbine characteristics.The effects of chamber width,wall draft and wall thickness on the hydrodynamic performance of a dual-chamber OWC-WEC are investigated.The results demonstrate that the device,with a smaller front wall draft and a wider rear chamber exhibits a broader effective frequency bandwidth.The device with a chamber-width-ratio of 1:3 performs better in terms of power absorption.Additionally,results from the analysis of a triplechamber OWC-WEC demonstrate that reducing the front chamber width and increasing the rearward chamber width can improve the total performance of the device.Increasing the number of chambers from 1 to 2 or 3 can widen the effective frequency bandwidth.
基金supported by the National Natural Science Foundation of China(Grant Nos.52071348 and 51979129)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20201006)the Natural Science Research of Jiangsu Higher Education Institutions of China(Grant No.22KJA130001).
文摘A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been conducted to investigate the design of the rafts.The effects of different parameters(wave parameters,structural parameters and PTO parameters)on the hydrodynamic characteristics of the attenuator-type WEC were studied in detail.The results show that in terms of wave parameters,there is an optimal wave period,which makes the relative pitching angle amplitude of the WEC reach the maximum,and the increase of wave height is conducive to the relative pitching angle amplitude of wave energy.Under different wave conditions,the relative pitch angle of the parallelogram raft device is the maximum.In terms of structural parameters,the parallelogram attenuator-type device has the optimal values in different relative directions,different distances and different apex angle,which makes the relative motion amplitude of the device reach the maximum,and the spacing and the apex angle have influence on the motion frequency of the device,while the relative direction has almost no influence on it.In terms of PTO parameters,there is an optimal damping coefficient,which makes the power generation efficiency of the WEC reach the maximum.The research results provide a valuable reference for future research and design of the attenuator-type WEC.
基金financially supported by the National Key R&D Program of China (Grant No.2018YFB1501900)the Shandong Provincial Natural Science Foundation (Grant No.ZR2021ZD23)+3 种基金Qingdao Postdoctoral Program (Grant No.QDBSH20220201015)the Fundamental Research Funds for the Central Universities (Grant No.202313031)the National Natural Science Foundation of China (Grant No.52071303)the Taishan Scholars Program of Shandong Province (Grant No.ts20190914)。
文摘As an important wave energy converter(WEC),the double-buoy device has advantages of wider energy absorption band and deeper water adaptability,which attract an increasing number of attentions from researchers.This paper makes an in-depth study on double-buoy WEC,by means of the combination of model experiment and numerical simulation.The Response Amplitude Operator(RAO)and energy capture of the double-buoy under constant power take-off(PTO)damping are investigated in the model test,while the average power output and capture width ratio(CWR)are calculated by the numerical simulation to analyze the influence of the wave condition,PTO,and the geometry parameters of the device.The AQWA-Fortran united simulation sy stem,including the secondary developme nt of AQWA software coupled with the flowchart of the Fortran code,models a new dynamic system.Various viscous damping and hydraulic friction from WEC system are measured from the experimental results,and these values are added to the equation of motion.As a result,the energy loss is contained in the final numerical model the by united simulation system.Using the developed numerical model,the optimal period of energy capture is identified.The power capture reaches the maximum value under the outer buoy's natural period.The paper gives the peak value of the energy capture under the linear PTO damping force,and calculates the optimal mass ratio of the device.
基金supported by the National Key R&D Program of China(Grant No.2016YFC1400202)the China Postdoctoral Science Foundation(Grant No.2017M622692)+2 种基金the Open Foundation of the State Key Laboratory of Coastal and Offshore Engineering of Dalian University of Technology(Grant No.LP1713)the Guangdong Provincial Department of Science and Technology(Grant No.2015A020216005)the Fundamental Research Funds for the Central Universities(Grant No.2017BQ093)
文摘Latching control is considered to be an effective way to improve the energy absorption of a wave energy converter(WEC).Recently, a latching control method was realized in a hydraulic power take-off(PTO) system and was demonstrated to be effective in one-body WECs. However, the effectiveness of latching control for two-body WECs still needs to be tested. In this paper, a feedback latching controller is proposed for a conceptual two-body WEC. In this conceptual design, a permanent-magnet linear generator(PMLG) is adopted as the PTO system, and a pure water hydraulic cylinder system is designed for performing the latching control. A feedback control strategy based on the measurement of latching force is established, formulated and tested numerically under realistic irregular wave conditions. The effects of the wave peak period and the PTO damping coefficient on the effectiveness of the latching control is also investigated. The results indicate that the proposed feedback latching control is effective for improving the annual power absorption of the two-body WEC. Furthermore, compared to another latching control,the proposed control is more practical because it does not require any knowledge of the wave conditions or the dynamics of the whole WEC system.
文摘Harvesting the energy from ocean waves is one of the greatest attractions for energy engineers and scientists. Till date, plenty of methods have been adopted to harvest the energy from the ocean waves. However, due to technological and economical complexity, it is intricate to involve the majority of these energy harvesters in the real ocean environment. Effective utilization and sustain- ability of any wave energy harvester depend upon its adaptability in the irregular seasonal waves, situation capability in maximum energy extraction and finally fulfilling the economic barriers. In this paper, the front end energy conversions are reviewed in detail which is positioned in the first stage of the wave energy converter among other stages such as power take off (PTO) and electrical energy conversion. If the recent development of these front end energy conversion is well known then developing wave energy converter with economic and commercial viability is possible. The aim of this review is to provide information on front end energy conversion of a point absorber and emphasize the strategies and calamity to be considered in designing such kinds of devices to improve the energy harvesting competence. This will be useful to the engineers for speeding up the development of a matured point absorbing type wave energy converter.
基金The National Natural Science Foundation of China under contract No.51979165。
文摘The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predicted by incorporating a second order random wave model into a nonlinear dynamic filter.This is a new approach,and,as the second order random wave model can be utilized to accurately simulate the nonlinear waves in an irregular sea,avoids the inaccuracies resulting from using a first order linear wave model in the simulation process.The predicted results have been systematically analyzed and compared,and the advantages of using this new approach have been convincingly substantiated.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51205346 and 41206074)the National High Technology Research and Development Program of China(863 Program+3 种基金Grant No.2011AA050201)Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51221004)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY12E05017)Open Foundation of the State Key Laboratory of Fluid Power Transmission and Control(Grant No.GZKF-201311)
文摘This paper describes a dual-stroke acting hydraulic power take-off (PTO) system employed in the wave energy converter (WEC) with an inverse pendulum. The hydraulic PTO converts slow irregular reciprocating wave motions to relatively smooth, fast rotation of an electrical generator. The design of the hydraulic PTO system and its control are critical to maximize the generated power. A time domain simulation study and the laboratory experiment of the full-scale beach test are presented. The results of the simulation and laboratory experiments including their comparison at full-scale are also presented, which have validated the rationality of the design and the reliability of some key components of the prototype of the WEC with an inverse pendulum with the dual-stroke acting hydraulic PTO system.
基金financially supported by the National Natural Science Foundation of China(Grant Number 51475465)the Hunan Provincial Innovation Foundation for Postgraduate(Grant Number CX2015B014).
文摘Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient power supply modes is one of the technical bottlenecks restricting the effective utilisation of this type of equipment.In this work,the performance characteristics of a new type of elastic-blade/wave-energy converter(EBWEC)and its core energy conversion component(named wave energy absorber)are comprehensively studied.In particular,computational fluid dynamics(CFD)simulations and experiments have been used to analyze the hydrodynamics and performance characteristics of the EBWEC.The pressure cloud diagrams relating to the surface of the elastic blade were obtained through two-way fluid-solid coupling simulations.The influence of blade thickness and relative speed on the performance characteristics of EBWEC was analyzed accordingly.A prototype of the EBWEC and its bucket test platform were also developed.The power characteristics of the EBWEC were analyzed and studied by using the blade thickness and motion cycle as control variables.The present research shows that the EBWEC can effectively overcome the performance disadvantages related to the transmission shaft torque load and power curve fluctuations of rigid blade wave energy converters(RBWEC).
文摘This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves’ behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method’s efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.
基金financially supported by the National Natural Science Foundation of China(Grant No.51779104)the Natural Science Foundation of Fujian Province,China(Grant Nos.2016J01247 and 2016J01245)+1 种基金the New Century Talent Support Program of Fujian Province,China(Grant No.JA13170)the Foreign Cooperation Program of Fujian Province,China(Grant No.2016I010003)
文摘The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodies and the floating central platform capture multi-point wave energy simultaneously. The converter was simplified as a forced vibration system with three degrees of freedom, namely two heave motions and one rotational motion. The expressions of the amplitude-frequency response and the wave energy capture width were deduced from the motion equations of the converter. Based on the built mathematical model, the effects of the PTO damping coefficient, the PTO elastic coefficient, the connection length between the oscillating body and central platform, and the total number of oscillating bodies on the performance of the wave energy converter were investigated. Numerical results indicate that the dynamical properties and the energy conversion efficiency are related not only to the incident wave circle frequency but also to the converter’s physical parameters and interior PTO coefficients. By adjusting the connection length, higher wave energy absorption efficiencies can be obtained. More oscillating bodies installed result in more stable floating central platform and higher wave energy conversion efficiency.
基金sponsored by the Research Center of Ocean Environment and Technology under Grant No. D99-1500the Science Council under Grant No. NSC 100-2917-I-564-064
文摘The wave energy resource around the coasts of Taiwan is investigated with wave buoy data covering a 3-year period (2007-2009). Eleven study sites within the region bounded by the 21.5^°N-25.5°N latitudes and 118°E-122°E longitudes are selected for analysis. The monthly moving-average filter is used to obtain the low-frequency trend based on the available hourly data. After quantifying the wave power and annual wave energy, the substantial resource is the result of Penghu buoy station, which is at the northeastern side of Penghu Island in the Taiwan Strait. it is investigated that the Penghu sea area is determined to be the optimal place for wave energy production according to its abundant resource of northeasterly monsoon waves, sheltering of the Taiwan Island, operation and maintenance in terms of seasonal conditions, and constructability of wave power devices.
基金supported by the National Natural Science Foundation of China(Grant No.41406102)the Special Foundation for Ocean Renewable Energy(Grant No.GHME2016YY01)
文摘According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture.
基金financially supported by the Special Fund for Marine Renewable Energy of the Ministry of Finance of China (Grant No. GD2010ZC02)
文摘Many of the existing wave energy converters (WEC) are of oscillating water column (OWC) and point absorber (PA) types. Fewer references have been published in public on the pendulum type WEC. A series of experimental tests on a bottom-hinged pendulum WEC model are carded out and some results are revealed in the present study. The purpose of this paper is to present a detailed description of the tests. It is found that wave energy conversion efficiency varies with the applied damping and wave conditions. In addition, special attention is given to the effect of the water ballast on the efficiency of the wave energy converter. It is demonstrated that the ballast plays an important role in energy extraction. Better understanding on how the performance of the device is influenced by damping, wave height, wave period and ballast is shown.