Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generati...Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generation features of the hybrid systems under operational sea states is necessary but limited by numerical simulation tools.Here an aero-hydro-servo-elastic coupling numerical tool is developed and applied to investigate the motion,mooring tension,and energy conversion performance of a hybrid system consisting of a spar-type floating wind turbine and an annular wave energy converter.Results show that the addition of the WEC has no significant negative effect on the dynamic performance of the platform and even enhances the rotational stability of the platform.For surge and pitch motion,the peak of the spectra is originated from the dominating wave component,whereas for the heave motion,the peak of the spectrum is the superposed effect of the dominating wave component and the resonance of the system.The addition of the annular WEC can slightly improve the wind power by making the rotor to be in a better position to face the incoming wind and provide considerable wave energy production,which can compensate for the downtime of the offshore wind.展开更多
The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-ab...The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-absorbing floating body rotates around the hinge point, and the wave energy can be converted into kinetic energy. In this paper, the power take-off system of " Sharp Eagle Ⅱ” wave energy converter (the second generation of " Sharp Eagle”) was studied, which adopts the hydraulic type power take-off system. The 0-1 power generation mode was applied in this system to make the " Sharp Eagle Ⅱ” operate under various wave conditions. The principle of power generation was introduced in detail, and the power take-off system was simulated. Three groups of different movement period inputs were used to simulate three kinds of wave conditions, and the simulation results were obtained under three different working conditions. In addition, the prototype of " Sharp Eagle Ⅱ” wave energy converter was tested on land and in real sea conditions. The experimental data have been collected, and the experimental data and simulation results were compared and validated. This work has laid a foundation for the design and application of the following " Sharp Eagle” series of devices.展开更多
In the past few decades, world energy consumption grew considerably. Regarding this fact, wave energy should not be discarded as a valid alternative for the production of electricity. Devices suitable to harness this ...In the past few decades, world energy consumption grew considerably. Regarding this fact, wave energy should not be discarded as a valid alternative for the production of electricity. Devices suitable to harness this kind of renewable energy source and turn it into electricity are not yet commercially competitive. The work described in this paper aims to contribute to this field of research. It is focused on the design and construction of robust, simple and affordable hydraulic Power Take-Off using hydraulic commercial components.展开更多
To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is car...To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD.展开更多
A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been cond...A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been conducted to investigate the design of the rafts.The effects of different parameters(wave parameters,structural parameters and PTO parameters)on the hydrodynamic characteristics of the attenuator-type WEC were studied in detail.The results show that in terms of wave parameters,there is an optimal wave period,which makes the relative pitching angle amplitude of the WEC reach the maximum,and the increase of wave height is conducive to the relative pitching angle amplitude of wave energy.Under different wave conditions,the relative pitch angle of the parallelogram raft device is the maximum.In terms of structural parameters,the parallelogram attenuator-type device has the optimal values in different relative directions,different distances and different apex angle,which makes the relative motion amplitude of the device reach the maximum,and the spacing and the apex angle have influence on the motion frequency of the device,while the relative direction has almost no influence on it.In terms of PTO parameters,there is an optimal damping coefficient,which makes the power generation efficiency of the WEC reach the maximum.The research results provide a valuable reference for future research and design of the attenuator-type WEC.展开更多
The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous comput...The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous computational fluid dynamics(CFD) theory, we investigated the hydrodynamic performances of the floating box and Berkeley Wedge breakwaters, both of which can also serve as WECs. A numerical wave flume model is constructed using Star-CCM+software and applied to investigate the interaction between waves and wave energy converters while completing the verification of the convergence study of time and space steps. The effects of wave length on motion response and transmission coefficient of the floating box breakwater model are studied. Comparisons of our numerical results and published experimental data indicate that Star-CCM+ is very capable of accurately modeling the nonlinear wave interaction of floating structures, while the analytical potential theory overrates the results especially around the resonant frequency. Optimal damping can be readily predicted using potential flow theory and can then be verified by CFD numerical results. Next, we investigated the relationship between wave frequencies and various coefficients using the CFD model under optimal damping, including the motion response, transmission coefficient, reflection coefficient,dissipation coefficient, and wave energy conversion efficiency. We then compared the power generation efficiencies and wave dissipation performances of the floating box and Berkeley Wedge breakwaters. The results show that the power generation efficiency of the Berkeley Wedge breakwater is always much higher than that of the floating box breakwater. Besides, the wave dissipation performance of the Berkeley Wedge breakwater is much better than that of the floating box breakwater at lower frequency.展开更多
Inside the second experimental wave energy converter (WEC) launched at the Lysekil research site on the Swedish west coast in March 2009 a number of sensor systems were installed for measuring the mechanical performan...Inside the second experimental wave energy converter (WEC) launched at the Lysekil research site on the Swedish west coast in March 2009 a number of sensor systems were installed for measuring the mechanical performance of the WEC and its mechanical subsystems. One of the measurement systems was a set-up of 7 laser triangulation sensors for measuring relative displacement of the piston rod mechanical lead-through transmission in the direct drive. Two measurement periods, separated by 2.5 month, are presented in this paper. One measurement is made two weeks after launch and another 3 months after launch. Comparisons and correlations are made between different sensors measuring simultaneously. Noise levels are investigated. Filtering is discussed for further refinement of the laser triangulation sensor signals in order to separate noise from actual physical displacement and vibration. Measurements are presented from the relative displacement of the piston rod mechanical lead-through, from magnetic flux in the air gap, mechanical strain in the WEC structure, translator position and piston rod axial displacement and active AC power. Investigation into the measurements in the time domain with close-ups, in the frequency domain with Fast Fourier transform (FFT) and with time-frequency analysis with short time Fourier transform (STFT) is carried out to map the spectral content in the measurements. End stop impact is clearly visible in the time-frequency analysis. The FFT magnitude spectra are investigated for identifying the cogging bandwidth among other vibrations. Generator cogging, fluctuations in the damping force and in the Lorenz forces in the stator are distinguished and varies depending on translator speed. Vibrations from cogging seem to be present in the early measurement period while not so prominent in the late measurement period. Vibration frequencies due to wear are recognized by comparing with the noise at generator standstill and the vibration sources in the generator. It is concluded that a moving average is a sufficient filter in the time domain for further analysis of the relative displacement of the piston rod mechanical lead-through transmission.展开更多
Wave energy has gained its popularity in recent decades due to the vast amount of untapped wave energy resources.There are numerous types of wave energy convertor(WEC)being proposed and to be economically viable,vario...Wave energy has gained its popularity in recent decades due to the vast amount of untapped wave energy resources.There are numerous types of wave energy convertor(WEC)being proposed and to be economically viable,various means to enhance the power generation from WECs have been studied and investigated.In this paper,a novel pontoon-type WEC,which is formed by multiple plate-like modules connected by hinges,are considered.The power enhancement of this pontoon-type WEC is achieved by allowing certain level of structural deformation and by utilizing a series of optimal variable power take-off(PTO)system.The wave energy is converted into useful electricity by attaching the PTO systems on the hinge connectors such that the mechanical movements of the hinges could produce electricity.In this paper,various structural rigidity of the interconnected modules are considered by changing the material Young’s modulus in order to investigate its impact on the power enhancement.In addition,the genetic algorithm optimization scheme is utilized to seek for the optimal PTO damping in the variable PTO system.It is observed that under certain condition,the flexible pontoon-type WEC with lesser connection joints is more effective in generating energy as compared to its rigid counterpart with higher connection joints.It is also found that the variable PTO system is able to generate greater energy as compared to the PTO system with constant/uniform PTO damping.展开更多
组合型振荡浮子式波浪发电装置由能量俘获系统与能量转换系统构成,其中能量转换系统直接决定整个装置的能量转换效率和发电功率。基于前期10 k W波浪发电装置的海试结果,对装置中的直驱型液压式能量转换系统进行结构优化,设计一种应用于...组合型振荡浮子式波浪发电装置由能量俘获系统与能量转换系统构成,其中能量转换系统直接决定整个装置的能量转换效率和发电功率。基于前期10 k W波浪发电装置的海试结果,对装置中的直驱型液压式能量转换系统进行结构优化,设计一种应用于100 k W波浪发电装置的蓄能型液压式能量转换系统,并研制"液压自调整控制系统",实现能量转换系统蓄能与放能过程的解耦控制。通过现场试验,验证优化后的能量转换系统在提高能量转换效率和维持过程平稳性上的有效性。基于该能量转换系统的能量输出特性,提出发电机带纯阻性负载时的"最大功率点跟踪"匹配负载计算方法,以及后续并网电力变换系统的拓扑结构设计,并通过Simulink仿真,验证方案的可靠性。展开更多
基金financially supported by the Key-Area Research and Development Program of Guangdong Province (Grant No.2020B1111010001)the National Natural Science Foundation of China (Grant Nos.52071096 and 52201322)+3 种基金the National Natural Science Foundation of China National Outstanding Youth Science Fund Project (Grant No.52222109)Guangdong Basic and Applied Basic Research Foundation (Grant No.2022B1515020036)the Fundamental Research Funds for the Central Universities (Grant No.2022ZYGXZR014)the State Key Laboratory of Coastal and Offshore Engineering through the Open Research Fund Program (Grant No.LP2214)。
文摘Combining wave energy converters(WECs)with floating offshore wind turbines proves a potential strategy to achieve better use of marine renewable energy.The full coupling investigation on the dynamic and power generation features of the hybrid systems under operational sea states is necessary but limited by numerical simulation tools.Here an aero-hydro-servo-elastic coupling numerical tool is developed and applied to investigate the motion,mooring tension,and energy conversion performance of a hybrid system consisting of a spar-type floating wind turbine and an annular wave energy converter.Results show that the addition of the WEC has no significant negative effect on the dynamic performance of the platform and even enhances the rotational stability of the platform.For surge and pitch motion,the peak of the spectra is originated from the dominating wave component,whereas for the heave motion,the peak of the spectrum is the superposed effect of the dominating wave component and the resonance of the system.The addition of the annular WEC can slightly improve the wind power by making the rotor to be in a better position to face the incoming wind and provide considerable wave energy production,which can compensate for the downtime of the offshore wind.
基金financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA13040202)the Special Funding Program for Marine Renewable Energy of the State Oceanic Administration(Grant No.GHME2017SF01)
文摘The " Sharp Eagle” device is a wave energy converter of a hinged double floating body. The wave-absorbing floating body hinges on the semi-submerged floating body structure. Under the action of wave, the wave-absorbing floating body rotates around the hinge point, and the wave energy can be converted into kinetic energy. In this paper, the power take-off system of " Sharp Eagle Ⅱ” wave energy converter (the second generation of " Sharp Eagle”) was studied, which adopts the hydraulic type power take-off system. The 0-1 power generation mode was applied in this system to make the " Sharp Eagle Ⅱ” operate under various wave conditions. The principle of power generation was introduced in detail, and the power take-off system was simulated. Three groups of different movement period inputs were used to simulate three kinds of wave conditions, and the simulation results were obtained under three different working conditions. In addition, the prototype of " Sharp Eagle Ⅱ” wave energy converter was tested on land and in real sea conditions. The experimental data have been collected, and the experimental data and simulation results were compared and validated. This work has laid a foundation for the design and application of the following " Sharp Eagle” series of devices.
文摘In the past few decades, world energy consumption grew considerably. Regarding this fact, wave energy should not be discarded as a valid alternative for the production of electricity. Devices suitable to harness this kind of renewable energy source and turn it into electricity are not yet commercially competitive. The work described in this paper aims to contribute to this field of research. It is focused on the design and construction of robust, simple and affordable hydraulic Power Take-Off using hydraulic commercial components.
基金supported by the National Natural Science Foundation of China(Grant Nos.51309068,51309069,51579055 and 11572094)the Special Funded of Innovational Talents of Science and Technology in Harbin(Grant No.RC2014QN001008)+1 种基金the China Postdoctoral Science Foundation(Grant Nos.2014M561334 and 2015T80330)the Heilongjiang Postdoctoral Science Foundation(Grant No.LBH-Z14060)
文摘To study the characteristics of attenuation, hydrostatic towage and wave response of the vertical-axis floating tidal current energy power generation device (VAFTCEPGD), a prototype is designed and experiment is carried out in the towing tank. Free decay is conducted to obtain attenuation characteristics of the VAFTCEPGD, and characteristics of mooring forces and motion response, floating condition, especially the lateral displacement of the VAFTCEPGD are obtained from the towing in still water. Tension response of the #1 mooring line and vibration characteristics of the VAFTCEPGD in regular waves as well as in level 4 irregular wave sea state with the current velocity of 0.6 m/s. The results can be reference for theoretical study and engineering applications related to VAFTCEPGD.
基金supported by the National Natural Science Foundation of China(Grant Nos.52071348 and 51979129)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20201006)the Natural Science Research of Jiangsu Higher Education Institutions of China(Grant No.22KJA130001).
文摘A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been conducted to investigate the design of the rafts.The effects of different parameters(wave parameters,structural parameters and PTO parameters)on the hydrodynamic characteristics of the attenuator-type WEC were studied in detail.The results show that in terms of wave parameters,there is an optimal wave period,which makes the relative pitching angle amplitude of the WEC reach the maximum,and the increase of wave height is conducive to the relative pitching angle amplitude of wave energy.Under different wave conditions,the relative pitch angle of the parallelogram raft device is the maximum.In terms of structural parameters,the parallelogram attenuator-type device has the optimal values in different relative directions,different distances and different apex angle,which makes the relative motion amplitude of the device reach the maximum,and the spacing and the apex angle have influence on the motion frequency of the device,while the relative direction has almost no influence on it.In terms of PTO parameters,there is an optimal damping coefficient,which makes the power generation efficiency of the WEC reach the maximum.The research results provide a valuable reference for future research and design of the attenuator-type WEC.
基金financially supported by the National Natural Science Foundation of China(51409066,51761135013)High Technology Ship Scientific Research Project from the Ministry of Industry and Information Technology of the People's Republic of China-Floating Security Platform Project(the second stage,201622)the Fundamental Research Fund for the Central University(HEUCF180104,HEUCFP201809)
文摘The integration of wave energy converters(WECs) with floating breakwaters has become common recently due to the benefits of both cost-sharing and providing offshore power supply. In this study, based on viscous computational fluid dynamics(CFD) theory, we investigated the hydrodynamic performances of the floating box and Berkeley Wedge breakwaters, both of which can also serve as WECs. A numerical wave flume model is constructed using Star-CCM+software and applied to investigate the interaction between waves and wave energy converters while completing the verification of the convergence study of time and space steps. The effects of wave length on motion response and transmission coefficient of the floating box breakwater model are studied. Comparisons of our numerical results and published experimental data indicate that Star-CCM+ is very capable of accurately modeling the nonlinear wave interaction of floating structures, while the analytical potential theory overrates the results especially around the resonant frequency. Optimal damping can be readily predicted using potential flow theory and can then be verified by CFD numerical results. Next, we investigated the relationship between wave frequencies and various coefficients using the CFD model under optimal damping, including the motion response, transmission coefficient, reflection coefficient,dissipation coefficient, and wave energy conversion efficiency. We then compared the power generation efficiencies and wave dissipation performances of the floating box and Berkeley Wedge breakwaters. The results show that the power generation efficiency of the Berkeley Wedge breakwater is always much higher than that of the floating box breakwater. Besides, the wave dissipation performance of the Berkeley Wedge breakwater is much better than that of the floating box breakwater at lower frequency.
基金supported by The Swedish Energy AgencyThe Gothenburg Energy Research Foundation,The Goran Gustavsson Research Foundation,Angpanneforeningen’s Foundation for Research and Development,The Olle Engkvist Foundation,The J.Gust.Richert Foundation,CF Environmental Fund,Vargons Research Foundation,The Swedish Research Council grant No.621-2009-3417 and the Wallenius Foundation.
文摘Inside the second experimental wave energy converter (WEC) launched at the Lysekil research site on the Swedish west coast in March 2009 a number of sensor systems were installed for measuring the mechanical performance of the WEC and its mechanical subsystems. One of the measurement systems was a set-up of 7 laser triangulation sensors for measuring relative displacement of the piston rod mechanical lead-through transmission in the direct drive. Two measurement periods, separated by 2.5 month, are presented in this paper. One measurement is made two weeks after launch and another 3 months after launch. Comparisons and correlations are made between different sensors measuring simultaneously. Noise levels are investigated. Filtering is discussed for further refinement of the laser triangulation sensor signals in order to separate noise from actual physical displacement and vibration. Measurements are presented from the relative displacement of the piston rod mechanical lead-through, from magnetic flux in the air gap, mechanical strain in the WEC structure, translator position and piston rod axial displacement and active AC power. Investigation into the measurements in the time domain with close-ups, in the frequency domain with Fast Fourier transform (FFT) and with time-frequency analysis with short time Fourier transform (STFT) is carried out to map the spectral content in the measurements. End stop impact is clearly visible in the time-frequency analysis. The FFT magnitude spectra are investigated for identifying the cogging bandwidth among other vibrations. Generator cogging, fluctuations in the damping force and in the Lorenz forces in the stator are distinguished and varies depending on translator speed. Vibrations from cogging seem to be present in the early measurement period while not so prominent in the late measurement period. Vibration frequencies due to wear are recognized by comparing with the noise at generator standstill and the vibration sources in the generator. It is concluded that a moving average is a sufficient filter in the time domain for further analysis of the relative displacement of the piston rod mechanical lead-through transmission.
文摘Wave energy has gained its popularity in recent decades due to the vast amount of untapped wave energy resources.There are numerous types of wave energy convertor(WEC)being proposed and to be economically viable,various means to enhance the power generation from WECs have been studied and investigated.In this paper,a novel pontoon-type WEC,which is formed by multiple plate-like modules connected by hinges,are considered.The power enhancement of this pontoon-type WEC is achieved by allowing certain level of structural deformation and by utilizing a series of optimal variable power take-off(PTO)system.The wave energy is converted into useful electricity by attaching the PTO systems on the hinge connectors such that the mechanical movements of the hinges could produce electricity.In this paper,various structural rigidity of the interconnected modules are considered by changing the material Young’s modulus in order to investigate its impact on the power enhancement.In addition,the genetic algorithm optimization scheme is utilized to seek for the optimal PTO damping in the variable PTO system.It is observed that under certain condition,the flexible pontoon-type WEC with lesser connection joints is more effective in generating energy as compared to its rigid counterpart with higher connection joints.It is also found that the variable PTO system is able to generate greater energy as compared to the PTO system with constant/uniform PTO damping.
文摘组合型振荡浮子式波浪发电装置由能量俘获系统与能量转换系统构成,其中能量转换系统直接决定整个装置的能量转换效率和发电功率。基于前期10 k W波浪发电装置的海试结果,对装置中的直驱型液压式能量转换系统进行结构优化,设计一种应用于100 k W波浪发电装置的蓄能型液压式能量转换系统,并研制"液压自调整控制系统",实现能量转换系统蓄能与放能过程的解耦控制。通过现场试验,验证优化后的能量转换系统在提高能量转换效率和维持过程平稳性上的有效性。基于该能量转换系统的能量输出特性,提出发电机带纯阻性负载时的"最大功率点跟踪"匹配负载计算方法,以及后续并网电力变换系统的拓扑结构设计,并通过Simulink仿真,验证方案的可靠性。