This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x...This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x 1 , x ′ ) ∈ R n + := R + × R n 1 , u(0, x) = u 0 (x) → u + , as x 1 → + ∞ , u t (0, x) = u 1 (x), u(t, 0, x ′ ) = u b , x ′ = (x 2 , x 3 , ··· , x n ) ∈ R n 1 . (I) For the non-degenerate case f ′ 1 (u + ) 〈 0, it was shown in [10] that the above initialboundary value problem (I) admits a unique global solution u(t, x) which converges to the corresponding planar stationary wave φ(x 1 ) uniformly in x 1 ∈ R + as time tends to infinity provided that the initial perturbation and/or the strength of the stationary wave are sufficiently small. And in [10] Ueda, Nakamura, and Kawashima proved the algebraic decay estimates of the tangential derivatives of the solution u(t, x) for t → + ∞ by using the space-time weighted energy method initiated by Kawashima and Matsumura [5] and improved by Nishihkawa [7]. Moreover, by using the same weighted energy method, an additional algebraic convergence rate in the normal direction was obtained by assuming that the initial perturbation decays algebraically. We note, however, that the analysis in [10] relies heavily on the assumption that f ′ (u) 〈 0. The main purpose of this paper isdevoted to discussing the case of f ′ 1 (u b ) ≥ 0 and we show that similar results still hold for such a case. Our analysis is based on some delicate energy estimates.展开更多
In this article,we study the pointwise estimates of solutions to the nonlinear viscous wave equation in even dimensions(n≥4).We use the Green’s function method.Our approach is on the basis of the detailed analysis o...In this article,we study the pointwise estimates of solutions to the nonlinear viscous wave equation in even dimensions(n≥4).We use the Green’s function method.Our approach is on the basis of the detailed analysis of the Green’s function of the linearized system.We show that the decay rates of the solution for the same problem are different in even dimensions and odd dimensions.It is shown that the solution exhibits a generalized Huygens principle.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we pro...Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we provide sufficient and necessary conditions on the existence of boundary blow-up solutions to the p-Laplacian problem△_(p)u=b(x)g(u)for x∈Ω,u(x)→+∞as dist(x,■Ω)→0.The estimates of such solutions are also investigated.Moreover,when b has strong singularity,the nonexistence of boundary blow-up(radial)solutions and infinitely many radial solutions are also considered.展开更多
We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we pro...We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we propose a rule for a time-stepping,which is a variant of what was successfully used in the case of nonlinear parabolic equations. A numerical blow-up time is defined and is proved to converge, under a certain hypothesis, to the real blow-up time as the grid size tends to zero.展开更多
This paper deals with an initial-boundary value problem of a fourth-order parabolic equation involving Logarithmic type p-Laplacian,which could be proposed as a model for the epitaxial growth of thin films.By using th...This paper deals with an initial-boundary value problem of a fourth-order parabolic equation involving Logarithmic type p-Laplacian,which could be proposed as a model for the epitaxial growth of thin films.By using the variational method and the logarithmic type Sobolev inequality,we give some threshold results for blow-up solutions and global solutions,which could be classified by the initial energy.The asymptotic estimates about blow-up time and decay estimate of weak solutions are obtained.展开更多
In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the ...In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.展开更多
This paper deals with some parabolic equations,where the reaction and the boundary flux are taken of some general forms.We study the explicit blow-up time estimates according to the different coupled relationship,incl...This paper deals with some parabolic equations,where the reaction and the boundary flux are taken of some general forms.We study the explicit blow-up time estimates according to the different coupled relationship,including the lower and upper bounds of blow-up time for every dimension of space domains.As examples,the results could be used to so many completely coupled models.展开更多
In this paper,we study the blow-up of solutions to a semi-linear wave equation with a nonlinear memory term of derivative type.By using methods of an iteration argument and di erential inequalities,we obtain the blow-...In this paper,we study the blow-up of solutions to a semi-linear wave equation with a nonlinear memory term of derivative type.By using methods of an iteration argument and di erential inequalities,we obtain the blow-up result for the semi-linear wave equation when the exponent of p is under certain conditions.Meanwhile,we derive an upper bound of the lifespan of solutions to the Cauchy problem for the semi-linear wave equation.展开更多
The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied w...The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.展开更多
This paper deals with the initial-boundary value mixed problems for nonlinear wave equations. By introducing the 'blowing-up facts K(u,u_i)', We may discuss the blowing up behaviours of solutions in finite tim...This paper deals with the initial-boundary value mixed problems for nonlinear wave equations. By introducing the 'blowing-up facts K(u,u_i)', We may discuss the blowing up behaviours of solutions in finite time to the mixed problems with respect to Neumann boundary and Dirichlet boundary for various nonlinear conditions and initial value conditions which usually meet.展开更多
The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the ...The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the mixed finite element with the finite volume method, the nonlinear and linear Euler fully discrete mixed covolume schemes are constructed, and the existence and uniqueness of the solutions are proved. The optimal error estimates for these schemes are obtained. Finally, a numerical example is provided to examine the efficiency of the proposed schemes.展开更多
In this paper,we study the blow-up of solutions to a semilinear double-wave equation with nonlinearity of derivative type.By using the iteration method and the differential inequality techniques,we can get the estimat...In this paper,we study the blow-up of solutions to a semilinear double-wave equation with nonlinearity of derivative type.By using the iteration method and the differential inequality techniques,we can get the estimates of the lifespan and the blow-up of solutions in the subcritical case under some assumptions.展开更多
An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations. By using the mixed formulation, we can get the optimal approximation for three variab...An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations. By using the mixed formulation, we can get the optimal approximation for three variables: the scalar unknown, its gradient and its flux(coefficient times the gradient), simultaneously. We also prove the existence and uniqueness of semi-discrete solution. Finally, we obtain some numerical results to illustrate the efficiency of the method.展开更多
This paper aims at analyzing the shapes of the bounded traveling wave solu- tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of pla...This paper aims at analyzing the shapes of the bounded traveling wave solu- tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of planar dynamical systems are used to make a qualitative analysis to the planar dynamical system which the bounded traveling wave solutions of this equation correspond to. The shapes, existent number, and condi- tions are presented for all bounded traveling wave solutions. The bounded traveling wave solutions are obtained by the undetermined coefficients method according to their shapes, including exact expressions of bell and kink profile solitary wave solutions and approxi- mate expressions of damped oscillatory solutions. For the approximate damped oscillatory solution, using the homogenization principle, its error estimate is given by establishing the integral equation, which reflects the relation between the exact and approximate so- lutions. It can be seen that the error is infinitesimal decreasing in the exponential form.展开更多
The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time peri...The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time periodic solutions, a priori estimate and Laray_Schauder fixed point theorem to prove the convergence of the approximate solutions, the existence of time periodic solutions for a damped generalized coupled nonlinear wave equations can be obtained.展开更多
In this article, we use streamline diffusion method for the linear second order hyperbolic initial-boundary value problem. More specifically, we prove a posteriori error estimates for this method for the linear wave e...In this article, we use streamline diffusion method for the linear second order hyperbolic initial-boundary value problem. More specifically, we prove a posteriori error estimates for this method for the linear wave equation. We observe that this error estimates make finite element method increasingly powerful rather than other methods.展开更多
Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direc...Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.展开更多
The paper studies the asymptotic behavior of solution to the initial boundary value problem for a nonlinear hyperbolic equation of Kirchhoff type It proves the global existence of solution by constructing a stable se...The paper studies the asymptotic behavior of solution to the initial boundary value problem for a nonlinear hyperbolic equation of Kirchhoff type It proves the global existence of solution by constructing a stable set and the energy exponential decayestimate by applying a lemma of V Komornik.展开更多
In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from...In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties.展开更多
基金The research of Fan Lili was supported by two grants from the National Natural Science Foundation of China (10871151 10925103)+1 种基金the research of Liu Hongxia was supported by National Natural Science Foundation of China (10871082)the research of Yin Hui was supported by National Natural Sciences Foundation of China (10901064)
文摘This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x 1 , x ′ ) ∈ R n + := R + × R n 1 , u(0, x) = u 0 (x) → u + , as x 1 → + ∞ , u t (0, x) = u 1 (x), u(t, 0, x ′ ) = u b , x ′ = (x 2 , x 3 , ··· , x n ) ∈ R n 1 . (I) For the non-degenerate case f ′ 1 (u + ) 〈 0, it was shown in [10] that the above initialboundary value problem (I) admits a unique global solution u(t, x) which converges to the corresponding planar stationary wave φ(x 1 ) uniformly in x 1 ∈ R + as time tends to infinity provided that the initial perturbation and/or the strength of the stationary wave are sufficiently small. And in [10] Ueda, Nakamura, and Kawashima proved the algebraic decay estimates of the tangential derivatives of the solution u(t, x) for t → + ∞ by using the space-time weighted energy method initiated by Kawashima and Matsumura [5] and improved by Nishihkawa [7]. Moreover, by using the same weighted energy method, an additional algebraic convergence rate in the normal direction was obtained by assuming that the initial perturbation decays algebraically. We note, however, that the analysis in [10] relies heavily on the assumption that f ′ (u) 〈 0. The main purpose of this paper isdevoted to discussing the case of f ′ 1 (u b ) ≥ 0 and we show that similar results still hold for such a case. Our analysis is based on some delicate energy estimates.
文摘In this article,we study the pointwise estimates of solutions to the nonlinear viscous wave equation in even dimensions(n≥4).We use the Green’s function method.Our approach is on the basis of the detailed analysis of the Green’s function of the linearized system.We show that the decay rates of the solution for the same problem are different in even dimensions and odd dimensions.It is shown that the solution exhibits a generalized Huygens principle.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
基金supported by the Beijing Natural Science Foundation(1212003)。
文摘Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we provide sufficient and necessary conditions on the existence of boundary blow-up solutions to the p-Laplacian problem△_(p)u=b(x)g(u)for x∈Ω,u(x)→+∞as dist(x,■Ω)→0.The estimates of such solutions are also investigated.Moreover,when b has strong singularity,the nonexistence of boundary blow-up(radial)solutions and infinitely many radial solutions are also considered.
基金supported by the grant NSC 98-2115-M-194-010-MY2
文摘We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we propose a rule for a time-stepping,which is a variant of what was successfully used in the case of nonlinear parabolic equations. A numerical blow-up time is defined and is proved to converge, under a certain hypothesis, to the real blow-up time as the grid size tends to zero.
基金Supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2021MA003).
文摘This paper deals with an initial-boundary value problem of a fourth-order parabolic equation involving Logarithmic type p-Laplacian,which could be proposed as a model for the epitaxial growth of thin films.By using the variational method and the logarithmic type Sobolev inequality,we give some threshold results for blow-up solutions and global solutions,which could be classified by the initial energy.The asymptotic estimates about blow-up time and decay estimate of weak solutions are obtained.
文摘In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.
基金Supported by Shandong Provincial Natural Science Foundation of China。
文摘This paper deals with some parabolic equations,where the reaction and the boundary flux are taken of some general forms.We study the explicit blow-up time estimates according to the different coupled relationship,including the lower and upper bounds of blow-up time for every dimension of space domains.As examples,the results could be used to so many completely coupled models.
基金Supported by the Natural Science Foundation of China(Grant No.11371175)Innovation Team Project in Colleges and Universities of Guangdong Province(Grant No.2020WCXTD008)+1 种基金Science Foundation of Huashang College Guangdong University of Finance&Economics(Grant No.2020HSDS01)Science Research Team Project in Guangzhou Huashang College(Grant No.2021HSKT01).
文摘In this paper,we study the blow-up of solutions to a semi-linear wave equation with a nonlinear memory term of derivative type.By using methods of an iteration argument and di erential inequalities,we obtain the blow-up result for the semi-linear wave equation when the exponent of p is under certain conditions.Meanwhile,we derive an upper bound of the lifespan of solutions to the Cauchy problem for the semi-linear wave equation.
文摘The existence and the nonexistence,the uniqueness and the energy decay estimate of solution for the fourth-order nonlinear wave equation utt+αΔ2 u-bΔut-βΔu+ut|ut|^r+g(u)=0 in Ω×(0,∞) are studied with the boundary condition u=(u)/(υ)=0 onΩ and the initial condition u(x,0)=u0(x),ut(x,0)=u1(x,0) in bounded domain ΩR^n ,n≥1.The energy decay rate of the global solution is estimated by the multiplier method.The blow-up result of the solution in finite time is established by the ideal of a potential well theory,and the existence of the solution is gotten by the Galekin approximation method.
文摘This paper deals with the initial-boundary value mixed problems for nonlinear wave equations. By introducing the 'blowing-up facts K(u,u_i)', We may discuss the blowing up behaviours of solutions in finite time to the mixed problems with respect to Neumann boundary and Dirichlet boundary for various nonlinear conditions and initial value conditions which usually meet.
基金supported by the National Natural Science Fundation of China (No. 11061021)the Science Research of Inner Mongolia Advanced Education (Nos. NJ10006, NJ10016, and NJZZ12011)the National Science Foundation of Inner Mongolia (Nos. 2011BS0102 and 2012MS0106)
文摘The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the mixed finite element with the finite volume method, the nonlinear and linear Euler fully discrete mixed covolume schemes are constructed, and the existence and uniqueness of the solutions are proved. The optimal error estimates for these schemes are obtained. Finally, a numerical example is provided to examine the efficiency of the proposed schemes.
基金Supported by the Natural Science Foundation of China(Grant No.61907010)Innovation Team Project in Colleges and Universities of Guangdong Province(Grant No.2020WCXTD008)Science Foundation of Huashang College Guangdong University of Finance&Economics(Grant No.2020HSDS01)。
文摘In this paper,we study the blow-up of solutions to a semilinear double-wave equation with nonlinearity of derivative type.By using the iteration method and the differential inequality techniques,we can get the estimates of the lifespan and the blow-up of solutions in the subcritical case under some assumptions.
基金Supported by the National Natural Science Fund(11061021)Supported by the Scientific Research Projection of Higher Schools of Inner Mongolia(NJZZ12011, NJ10006)+1 种基金Supported by the Program of Higher-level talents of Inner Mongolia University(125119)Supported by the Scientific Research Projection of Inner Mongolia University of Finance and Economics(KY1101)
文摘An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations. By using the mixed formulation, we can get the optimal approximation for three variables: the scalar unknown, its gradient and its flux(coefficient times the gradient), simultaneously. We also prove the existence and uniqueness of semi-discrete solution. Finally, we obtain some numerical results to illustrate the efficiency of the method.
基金Project supported by the National Natural Science Foundation of China(No.11071164)the Innovation Program of Shanghai Municipal Education Commission(No.13ZZ118)+1 种基金the Shanghai Leading Academic Discipline Project(No.XTKX2012)the Innovation Fund Project for Graduate Stu-dent of Shanghai(No.JWCXSL1201)
文摘This paper aims at analyzing the shapes of the bounded traveling wave solu- tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of planar dynamical systems are used to make a qualitative analysis to the planar dynamical system which the bounded traveling wave solutions of this equation correspond to. The shapes, existent number, and condi- tions are presented for all bounded traveling wave solutions. The bounded traveling wave solutions are obtained by the undetermined coefficients method according to their shapes, including exact expressions of bell and kink profile solitary wave solutions and approxi- mate expressions of damped oscillatory solutions. For the approximate damped oscillatory solution, using the homogenization principle, its error estimate is given by establishing the integral equation, which reflects the relation between the exact and approximate so- lutions. It can be seen that the error is infinitesimal decreasing in the exponential form.
文摘The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time periodic solutions, a priori estimate and Laray_Schauder fixed point theorem to prove the convergence of the approximate solutions, the existence of time periodic solutions for a damped generalized coupled nonlinear wave equations can be obtained.
文摘In this article, we use streamline diffusion method for the linear second order hyperbolic initial-boundary value problem. More specifically, we prove a posteriori error estimates for this method for the linear wave equation. We observe that this error estimates make finite element method increasingly powerful rather than other methods.
基金supported by the National Natural Science Foundation of China grants No.11971241.
文摘Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.
基金Foundation item: Supported by the National Natural Science Foundation of China(11271336)
文摘The paper studies the asymptotic behavior of solution to the initial boundary value problem for a nonlinear hyperbolic equation of Kirchhoff type It proves the global existence of solution by constructing a stable set and the energy exponential decayestimate by applying a lemma of V Komornik.
基金supported by the National Natural Science Foundation of China under Grant No.11571181the Natural Science Foundation of Jiangsu Province of China under Grant No.BK20171454.
文摘In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties.