In this article, we study certain oscillating multipliers related to Cauchy problem for the wave equations on the Euclidean space and on the torus. We obtain that, at the end point, these operators are bounded from th...In this article, we study certain oscillating multipliers related to Cauchy problem for the wave equations on the Euclidean space and on the torus. We obtain that, at the end point, these operators are bounded from the Lp spaces to certain block spaces.展开更多
Diffraction of plane P waves around an alluvial valley of arbitrary shape in poroelastic half-space is investigated by using an indirect boundary integral equation method. Based on the Green's fimctions of line sourc...Diffraction of plane P waves around an alluvial valley of arbitrary shape in poroelastic half-space is investigated by using an indirect boundary integral equation method. Based on the Green's fimctions of line source in poroelastic half-space, the scattered waves are constructed using the fictitious wave sources close to the interface of the valley and the density of ficti- tious wave sources are determined by boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, and the comparison between the degenerated solutions and available results in single-phase case. Finally, the nature of diffraction of plane P waves around an alluvial valley in poroelastic half-space is investigated in detail through nu- merical examples.展开更多
The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an...The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an elliptical hole, and the solution of dynamic stress intensity factor at the crack tip was given. A Green's function was constructed for the problem, which is a basic solution of displacement field for an elastic half space containing a half elliptical gap impacted by anti-plane harmonic linear source force at any point of its horizontal boundary. With division of a crack technique, a series of integral equations can be established on the conditions of continuity and the solution of dynamic stress intensity factor can be obtained. The influence of an elliptical hole on the dynamic stress intensity factor at the crack tip was discussed.展开更多
In this article,we study the boundedness properties of the averaging operator S_(t)^(γ) on Triebel-Lizorkin spaces F_(p,q)^(α)(R^(n))for various p,q.As an application,we obtain the norm convergence rate for S_(t)^(...In this article,we study the boundedness properties of the averaging operator S_(t)^(γ) on Triebel-Lizorkin spaces F_(p,q)^(α)(R^(n))for various p,q.As an application,we obtain the norm convergence rate for S_(t)^(γ)(f)on Triebel-Lizorkin spaces and the relation between the smoothness imposed on functions and the rate of norm convergence of S_(t)^(γ) is given.展开更多
We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known ...We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known results for oscillatory integrals under very weak size conditions on the kernel functions.展开更多
文摘In this article, we study certain oscillating multipliers related to Cauchy problem for the wave equations on the Euclidean space and on the torus. We obtain that, at the end point, these operators are bounded from the Lp spaces to certain block spaces.
基金supported by National Natural Science Foundation of China (50978183)
文摘Diffraction of plane P waves around an alluvial valley of arbitrary shape in poroelastic half-space is investigated by using an indirect boundary integral equation method. Based on the Green's fimctions of line source in poroelastic half-space, the scattered waves are constructed using the fictitious wave sources close to the interface of the valley and the density of ficti- tious wave sources are determined by boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, and the comparison between the degenerated solutions and available results in single-phase case. Finally, the nature of diffraction of plane P waves around an alluvial valley in poroelastic half-space is investigated in detail through nu- merical examples.
文摘The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an elliptical hole, and the solution of dynamic stress intensity factor at the crack tip was given. A Green's function was constructed for the problem, which is a basic solution of displacement field for an elastic half space containing a half elliptical gap impacted by anti-plane harmonic linear source force at any point of its horizontal boundary. With division of a crack technique, a series of integral equations can be established on the conditions of continuity and the solution of dynamic stress intensity factor can be obtained. The influence of an elliptical hole on the dynamic stress intensity factor at the crack tip was discussed.
基金Supported by the National Natural Science Foundation of China(12071437,12101562)the Natural Science Foundation of Zhejiang(LQ20A010003)the Natural Science Foundation from the Education Department of Anhui Province(KJ2017A847).
文摘In this article,we study the boundedness properties of the averaging operator S_(t)^(γ) on Triebel-Lizorkin spaces F_(p,q)^(α)(R^(n))for various p,q.As an application,we obtain the norm convergence rate for S_(t)^(γ)(f)on Triebel-Lizorkin spaces and the relation between the smoothness imposed on functions and the rate of norm convergence of S_(t)^(γ) is given.
文摘We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known results for oscillatory integrals under very weak size conditions on the kernel functions.