期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Magnetism: Further Proof of Wave Particle Duality
1
作者 Bhekuzulu Khumalo 《Natural Resources》 2023年第3期52-68,共17页
The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force mu... The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle. 展开更多
关键词 Anti-Matter Experiment Heisenberg Principle Khumalon MAGNETISM MATTER Quantum Magnetism wave/particle Duality Symmetry
下载PDF
Magnetism: Further Proof of Wave Particle Duality
2
作者 Bhekuzulu Khumalo 《Open Journal of Microphysics》 2023年第3期52-68,共17页
The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force mu... The question of what magnetism is vital to quantum physics. We know what all other quantum phenomenon is, but we did not know what magnetism is. It is not enough to say it is a force because of a charge. That force must be something, for consistencies sake it had to be tested. This paper was written in order to confirm the results that were received in the experiments that took place that led to the paper “Magnetism: Insights from the Thomas Young Experiment” where it was concluded the magnetic phenomenon is both a particle and a wave. Will different interference patterns confirm a khumalon and wave like behaviour? The khumalon is the name of the particle associated with magnetic phenomenon. This paper concludes by confirming what was discovered in mentioned paper. Magnetism organizes into a wave no matter the interference. Understanding this reality, it allows us to understand what is happening with simple magnetic interactions. When like poles meet because they can not occupy the same space they push each other. Opposite poles are antiparticles to each other and annihilate each other. South pole scientifically speaking is not attracted to the north pole, the reason why the magnets slam each other is because they are closing a magnetic vacuum caused by the particles annihilating each other. We can now start theorizing on why a lodestone attracts iron because we now know we are dealing with a particle. 展开更多
关键词 Anti-Matter Experiment Heisenberg Principle Khumalon MAGNETISM MATTER Quantum Magnetism wave/particle Duality Symmetry
下载PDF
Wave Particle Duality &Interference Explained
3
作者 Narendra Swarup Agarwal 《Journal of Modern Physics》 2016年第3期267-276,共10页
Photons and elementary particles display the properties of particle as well as of wave known as Wave Particle Duality. Quantum Theory could not explain Wave Particle Duality only due to the belief that photon has no m... Photons and elementary particles display the properties of particle as well as of wave known as Wave Particle Duality. Quantum Theory could not explain Wave Particle Duality only due to the belief that photon has no mass and accepted Wave Particle Duality as reality of quantum scale particles. “Experimental Proof of Mass in Photon” [1] discovered Inertial Force developed by the photons on Reflection. This Inertial Force is developed in the spinning photon from inside due to the mass of photon. These experiments also discovered that the centre of mass of photon was different from the centre of photon. Such presence of mass in a photon developing Inertial Force from within the photon gifts special properties to display Wave Particle Duality, Interference and Polarization etc. These phenomena are explained in this work which could not be explained by the Quantum Theory earlier. This work also confirms mass in photon based on both Newtonian and Special Theory of Relativity. New equations of true mass of photon are also derived. 展开更多
关键词 PHOTON Centre of Mass True Mass of Photon Angular Momentum Resultant Momentum wave particle Duality
下载PDF
Wave–particle duality in a Raman atom interferometer 被引量:1
4
作者 贾爱爱 杨俊 +3 位作者 颜树华 胡青青 罗玉昆 朱诗尧 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期166-169,共4页
We theoretically investigate the wave–particle duality based on a Raman atom interferometer, via the interaction between the atom and Raman laser, which is similar to the optical Mach–Zehnder interferometer. The wav... We theoretically investigate the wave–particle duality based on a Raman atom interferometer, via the interaction between the atom and Raman laser, which is similar to the optical Mach–Zehnder interferometer. The wave and which-way information are stored in the atomic internal states. For the φ- π- π /2 type of atom interferometer, we find that the visibility(V) and predictability(P) still satisfy the duality relation, P2+ V2≤ 1. 展开更多
关键词 complementarity waveparticle duality atom interferometer Raman pulse
下载PDF
Theoretical analysis of interaction between a particle and an oscillating bubble driven by ultrasound waves in liquid 被引量:2
5
作者 武耀蓉 王成会 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期279-286,共8页
A theoretical model is developed to describe the interaction of a particle and an oscillating bubble at arbitrary separation between them. The derivation of the model is based on the multipole expansion of the particl... A theoretical model is developed to describe the interaction of a particle and an oscillating bubble at arbitrary separation between them. The derivation of the model is based on the multipole expansion of the particle and bubble velocity potentials and the use of Lagrangian mechanics. The model consists of three coupled ordinary differential equations. One of them accounts for the pulsation of the bubble and the other two describe the translation of the bubble and particle in an infinite, incompressible liquid. The model here is accurate to order 1/d^10, where d is the distance between the centers of the particle and bubble. The effects of the size and density of the particle are investigated, namely, the interaction between the particle and bubble changes from repulsion to attraction with the increment of the particle density, and the increment of the particle size makes the interaction between the particle and bubble stronger. It is demonstrated that the driving frequency and acoustic pressure amplitude can affect the interaction of the particle and bubble. It is shown that the correct modeling of the translational dynamics of the bubble and particle at small separation distances requires terms accurate up to the tenth order. 展开更多
关键词 particle bubble ultrasound wave
下载PDF
Study on Duality of Wave and Particle of Turbulence Using CML Models
6
作者 LIU Zhao-Cun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第5期857-864,共8页
A family of coupled map lattice (CML) models has been developed to simulate the evolutional mechanism of interactions of convection, diffusion, and dispersion in both weakly and strongly coupled cases. Not only cohe... A family of coupled map lattice (CML) models has been developed to simulate the evolutional mechanism of interactions of convection, diffusion, and dispersion in both weakly and strongly coupled cases. Not only coherent and turbulent properties as well as their relations, but also the transitional states between convection dominating, diffusion dominating and dispersion dominating are analyzed to demonstrate the essential characteristics of any state. Numerical results show that the models are capable of simulating both layered coupling and stochastic mechanism, and lead us to understand whether or not turbulence coherent structure is formed by modulation of wave packet. The duality of wave and particle characters of turbulence is illustrated in the numerical simulation; a sketch picture is given to explain the questions associated with the turbulent inverse cascade, which is the result of the mutual interactions among the physical factors of nonlinearity, dissipation and dispersion. 展开更多
关键词 CML model non-linearity DISSIPATION dispersion duality of wave and particle
下载PDF
Effect of Particle Number Density on Wave Dispersion in a Two-Dimensional Yukawa System
7
作者 张壤月 刘艳红 +2 位作者 黄峰 陈朝阳 李春燕 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第7期155-159,共5页
Effect of the particle number density on the dispersion properties of longitudinal and transverse lattice waves in a two-dimensional Yukawa charged-dust system is investigated using molecular dynamics simulation. The ... Effect of the particle number density on the dispersion properties of longitudinal and transverse lattice waves in a two-dimensional Yukawa charged-dust system is investigated using molecular dynamics simulation. The dispersion relations for the waves are obtained. It is found that the frequencies of both the longitudinal and transverse dust waves increase with the density and when the density is sufficiently high a cutoff region appears at the short wavelength. With the increase of the particle number density, the common frequency tends to increase, and the sound speed of the longitudinal wave also increases, but that of the transverse wave remains low. 展开更多
关键词 Effect of particle Number Density on wave Dispersion in a Two-Dimensional Yukawa System
下载PDF
Kinetic Theories of Geodesic Acoustic Modes:Radial Structure,Linear Excitation by Energetic Particles and Nonlinear Saturation'
8
作者 QIU Zhiyong(仇志勇) Fulvio ZONCA CHEN Liu(陈骝) 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第3期257-266,共10页
Geodesic acoustic modes(GAMs)are oscillating zonal mode structures unique to toroidal plasmas and are capable of regulating microscopic turbulence and associated transports.Inthispaper,three important aspects of GAM... Geodesic acoustic modes(GAMs)are oscillating zonal mode structures unique to toroidal plasmas and are capable of regulating microscopic turbulence and associated transports.Inthispaper,three important aspects of GAM dynamics are investigated,namely(1) GAM continuous spectrum and its mode conversion to kinetic GAM (KGAM);(2) 1inear excitation of energetic particle induced GAM (EGAM) and its coupling to the GAM continuum, and (3) nonlinear saturationofEGAMviawaveparticletrapping.TheanalogybetweentheGAM 展开更多
关键词 geodesic acoustic mode CONTINUUM energetic particles wave particle trapping
下载PDF
Resonant Heating of Ions by Parallel Propagating Alfvén Waves in Solar Coronal Holes 被引量:1
9
作者 Tian-XiZhang Jing-XiuWang Chi-JieXiao 《Chinese Journal of Astronomy and Astrophysics》 CSCD 2005年第3期285-294,共10页
Resonant heating of H, O+5, and Mg+9 by parallel propagating ion cyclotron Alfven waves in solar coronal holes at a heliocentric distance is studied using the heating rate derived from the quasilinear theory. It is sh... Resonant heating of H, O+5, and Mg+9 by parallel propagating ion cyclotron Alfven waves in solar coronal holes at a heliocentric distance is studied using the heating rate derived from the quasilinear theory. It is shown that the particle-AlfVen-wave interaction is a significant microscopic process. The temperatures of the ions are rapidly increased up to the observed order in only microseconds, which implies that simply inserting the quasilinear heating rate into the fluid/MHD energy equation to calculate the radial dependence of ion temperatures may cause errors as the time scales do not match. Different species ions are heated by Alfven waves with a power law spectrum in approximately a mass order. To heat O+5 over Mg+9 as measured by the Ultraviolet Coronagraph Spectrometer (UVCS) in the solar coronal hole at a region ≥ 1.9.R, the energy density of Alfven waves with a frequency close to the O+5-cyclotron frequency must be at least double of that at the Mg+9-cyclotron frequency. With an appropriate wave-energy spectrum, the heating of H, O+5 and Mg+9 can be consistent with the UVCS measurements in solar coronal holes at a heliocentric distance. 展开更多
关键词 acceleration of particles - plasmas - waves - solar wind - Sun: corona
下载PDF
Comparative Study of Different SPH Schemes on Simulating Violent Water Wave Impact Flows 被引量:1
10
作者 郑兴 马庆位 段文洋 《China Ocean Engineering》 SCIE EI CSCD 2014年第6期791-806,共16页
Free surface flows are of significant interest in Computational Fluid Dynamics(CFD). However, violent water wave impact simulation especially when free surface breaks or impacts on solid wall can be a big challenge ... Free surface flows are of significant interest in Computational Fluid Dynamics(CFD). However, violent water wave impact simulation especially when free surface breaks or impacts on solid wall can be a big challenge for many CFD techniques. Smoothed Particle Hydrodynamics(SPH) has been reported as a robust and reliable method for simulating violent free surface flows. Weakly compressible SPH(WCSPH) uses an equation of state with a large sound speed, and the results of the WCSPH can induce a noisy pressure field and spurious oscillation of pressure in time history for wave impact problem simulation. As a remedy, the truly incompressible SPH(ISPH) technique was introduced, which uses a pressure Poisson equation to calculate the pressure. Although the pressure distribution in the whole field obtained by ISPH is smooth, the stability of the techniques is still an open discussion. In this paper, a new free surface identification scheme and solid boundary handling method are introduced to improve the accuracy of ISPH. This modified ISPH is used to study dam breaking flow and violent tank sloshing flows. On the comparative study of WCSPH and ISPH, the accuracy and efficiency are assessed and the results are compared with the experimental data. 展开更多
关键词 smoothed particle hydrodynamics(SPH) ISPH water wave impact
下载PDF
The Common Topological Origin of Waves in Quantum and Photon Physics as Well as in the Cosmic Redshift
11
作者 Ernst Karl Kunst 《Natural Science》 2022年第2期94-116,共23页
It is shown that the well-known wave behaviors of material particles and photons, as well as the newly discovered wave-like structures in the cosmic redshift, are related phenomena that follow conclusively when sender... It is shown that the well-known wave behaviors of material particles and photons, as well as the newly discovered wave-like structures in the cosmic redshift, are related phenomena that follow conclusively when senders and receivers of photons or material particles are topologically located in manifolds with a dimension difference of one. In this context, the inertial mass of the proton and the electron, their spin properties and the cause of time are derived from basic topological and physical laws. In addition, the quantum geometric basis of relativistic time dilation, the basis of the relativistic energy-momentum relationship and the relationship between energy and time are shown. Finally, it is shown that a curved cosmic space causes a distance-dependent reddening of light and the associated apparent escape velocity of distant cosmic objects, and that this also leads to a topologically conditioned wave structure of this redshift. 展开更多
关键词 waves in particle and Photon Physics Cosmic-Redshift wavelike Pattern Topological Interpretation Cause of Mass and Time
下载PDF
A Pursuit of Quantum Neuroscience’s Principles: Coherence Field Theory and the Physics of Mind 被引量:1
12
作者 Eric Bond 《World Journal of Neuroscience》 2022年第2期57-67,共11页
Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagne... Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory. 展开更多
关键词 Quantum Coherence wave particle Duality SUPERPOSITION ENTANGLEMENT Electromagnetic Field Electromagnetic Radiation Ebb Effect CEMI Atomic Theory
下载PDF
Development of plasma sources for Dipole Research EXperiment(DREX) 被引量:1
13
作者 肖青梅 王志斌 +6 位作者 鄂鹏 王晓钢 肖池阶 任洋 吉瀚涛 毛傲华 李立毅 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第5期15-20,共6页
Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adeq... Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density. 展开更多
关键词 Dipole Research EXperiment(DREX) plasma sources electron cyclotron resonance(ECR) bias cold cathode discharge wave particle interaction
下载PDF
Dependence of anomalous resistivity on bulk drift velocity of electrons in the reconnecting current sheets in solar flares 被引量:4
14
作者 Gui-Ping Wu Guang-Li Huang Hai-Sheng Ji 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2010年第11期1186-1194,共9页
Anomalous resistivity is critical for triggering fast magnetic reconnection in the nearly collisionless coronal plasma. Its nonlinear dependence on bulk drift velocity is usually assumed in MHD simulations. However, t... Anomalous resistivity is critical for triggering fast magnetic reconnection in the nearly collisionless coronal plasma. Its nonlinear dependence on bulk drift velocity is usually assumed in MHD simulations. However, the mechanism for the production of anomalous resistivity and its evolution is still an open question. We numerically solved the one dimension Vlasov equation with the typical solar coronal parameters and realistic mass ratios to infer the relationship between anomalous resistivity and bulk drift velocity of electrons in the reconnecting current sheets as well as its non- linear characteristics. Our principal findings are summarized as follows: 1) the relationship between the anomalous resistivity and bulk drift velocity of electrons relative to ions may be described as ηmax=0.03724(vd/ve)^5.702Ωm for vd/ve in the range of 1.4-2.0 and ηmax=0.8746(vd/ve)^1.284Ωm for vd/ve in the range of 2.5-4.5;2)if drift velocity is just slightly larger than the threshold of ion-acoustic instability, the anomalous resistivity due to the wave-particle interactions is enhanced by about five orders as compared with classic resistivity due to Coulomb collisions, With the increase of drift velocity from 1.4ve to 4.5Ve, the anomalous resistivity continues to increase 100 times; 3) in the rise phase of unstable waves, the anomalous resistivity has the same order as the one estimated from quasi-linear theory; after saturation of unstable waves, the anomalous resistivity decreases at least about one order as com- pared with its peak value; 4) considering that the final velocity of electrons ejected out of the reconnecting current sheet (RCS) decreases with the distance from the neutral point in the neutral plane, the anomalous resistivity decreases with the distance from the neutral point, which is favorable for the Petschek-like reconnection to take place. 展开更多
关键词 instabilities -- waves -- Sun: flares -- acceleration of particles
下载PDF
On the Elementary Mechanical Effects of the Space-Time-Symmetry Relativity
15
作者 Mikhail Petelin Manfred Thumm 《Natural Science》 2020年第9期661-665,共5页
This paper is an addendum to the article <span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">On the Evolution of Approaches to the Space- Time Symmetry&... This paper is an addendum to the article <span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">On the Evolution of Approaches to the Space- Time Symmetry</span><span style="font-family:Verdana;">”</span><span style="font-family:Verdana;">, Natural Science, Vol. 10, No. 3, pp. 81-84, 2018. The analysis is based on the Galileo</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s postulate that all inertial reference frames are equal. The postulate results immediately in the absolute speed limit, which is identical for all bodies in all reference frames. Two kinds of elementary particles are admitted: unhurried and restless ones (ex-emplified, accordingly, with electrons and photons). Any particle may be treated as wave packet, the particle mass and momentum depending on the reference frame. Thus, space-time-sym- metry is the natural background for the relativistic and quantum theo-ries.</span> 展开更多
关键词 Absolute Speed Limit Restless and Unhurried Elementary particles particle wave Packets Mass-Momentum Relation
下载PDF
Essentials of a Theory for How Brain Structure Contributes to the Substance of Consciousness
16
作者 Eric Bond 《World Journal of Neuroscience》 2022年第1期8-21,共14页
Neuroscience and physics have progressed far enough that the explanatory gap between models of matter and the substance of perceptual experience is tantalizingly close to being bridged, at least insofar as consciousne... Neuroscience and physics have progressed far enough that the explanatory gap between models of matter and the substance of perceptual experience is tantalizingly close to being bridged, at least insofar as consciousness is produced by the brain. This paper aims to describe the basics of how signals are transmitted within neurons via electromagnetic energy fluctuations, how EM fields emergent from these energy flows manifest as the subconscious and an experience of willed agency, as well as how the quantum principles which both EM radiation and atomic structure abide combine them to form percepts from electromagnetic matter. This might be the most promising option yet for fashioning a physical paradigm that theorizes consciousness. 展开更多
关键词 CONSCIOUSNESS Electromagnetic Field Electromagnetic Radiation CEMI Field Theory wave/particle Duality Quantum Entanglement Quantum Superposition Coherence Field
下载PDF
The Quantum Handshake: An Electric Charge/Transactional Interpretation of the Single Electron Double-Slit Experiment
17
作者 Eric Bond 《Journal of Quantum Information Science》 2021年第2期71-83,共13页
A new and falsifiable realist interpretation of quantum mechanics is examined in relation to the sum over histories concept, pilot wave theory and the many-worlds interpretation. This electric charge/transactional mod... A new and falsifiable realist interpretation of quantum mechanics is examined in relation to the sum over histories concept, pilot wave theory and the many-worlds interpretation. This electric charge/transactional model explains how the single electron double-slit experiment produces extremely localized endpoints from diffracted wavicles, why these endpoints are scattered around the entire surface of the absorber screen, and why these points of contact result in the characteristic fringe pattern as they accumulate. Advanced waves and substantive electric charge effects in the double-slit experiment are postulated, then this hypothesis is supported by a quantitative analysis of electron emission in comparison to lightning. The wider implications if advanced waves and electric charge distribution prove to be significant factors in the double-slit experiment are discussed, including possible parallels with meteorological and neurological phenomena. 展开更多
关键词 Double-Slit Experiment wave/particle Duality Interpretations of Quantum Mechanics Wheeler-Feynman Absorber Theory Advanced wave Retarded wave Lightning Bolt Mechanism Electric Charge NEUROSCIENCE
下载PDF
Energy spectral property in an isolated CME-driven shock
18
作者 Xin Wang Yi-Hua Yan +2 位作者 Ming-De Ding Na Wang Hao Shan 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2016年第2期105-112,共8页
Observations from multiple spacecraft show that there are energy spectral "breaks" at 1-10 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational e... Observations from multiple spacecraft show that there are energy spectral "breaks" at 1-10 MeV in some large CME-driven shocks. However, numerical models can hardly simulate this property due to high computational expense. The present paper focuses on analyzing these energy spectral "breaks" by Monte Carlo particle simulations of an isolated CME-driven shock. Taking the 2006 Dec 14 CME-driven shock as an example, we investigate the formation of this energy spectral property. For this purpose, we apply different values for the scattering time in our isolated shock model to obtain the highest energy "tails," which can potentially exceed the "break" energy range. However, we have not found the highest energy "tails" beyond the "break" energy range, but instead find that the highest energy "tails" reach saturation near the range of energy at 5 MeV. So, we believe that there exists an energy spectral "cut off" in an isolated shock. If there is no interaction with another shock, there would not be formation of the energy spectral "break" property. 展开更多
关键词 acceleration of particles -- shock waves -- Sun coronal mass ejections (CMEs) -- solar wind-- methods NUMERICAL
下载PDF
Analysis of shock wave reflection from fixed and moving boundaries using a stabilized particle method
19
作者 Hassan Ostad Soheil Mohammadi 《Particuology》 SCIE EI CAS CSCD 2009年第5期373-383,共11页
In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid bounda... In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries. 展开更多
关键词 CSPM Meshfree particle method Shock wave propagation and reflection Moving boundaries Compressible fluids Velocity field smoothing stabilization
原文传递
Analysis of the CME-driven shock from the SEP event that occurred on 2006 December 14
20
作者 Xin Wang Yi-Hua Yan 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2012年第11期1535-1548,共14页
In a solar flare or coronal mass ejection (CME), observations of the subse- quent interplanetary shock provide us with strong evidence of particle acceleration to energies of multiple MeV, even up to GeV. Diffusive ... In a solar flare or coronal mass ejection (CME), observations of the subse- quent interplanetary shock provide us with strong evidence of particle acceleration to energies of multiple MeV, even up to GeV. Diffusive shock acceleration is an efficient mechanism for particle acceleration. For investigating the shock structure, the energy injection and energy spectrum ofa CME-driven shock, we perform a dynamical Monte Carlo simulation of the CME-driven shock that occurred on 2006 December 14 using an anisotropic scattering law. The simulated results of the shock's fine structure, par- ticle injection, and energy spectrum are presented. We find that our simulation results give a good fit to the observations from multiple spacecraft. 展开更多
关键词 acceleration of particles -- shock waves -- Sun: coronal mass ejections(CMEs) -- solar wind -- methods: numerical
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部