期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Calculation of Wave Pressure and Pressure Spectrum for Perforated-Pipe Breakwater 被引量:3
1
作者 Li, CZ Shi, HD +1 位作者 Yu, DY Wang, AQ 《China Ocean Engineering》 SCIE EI 1997年第1期79-88,共10页
Standing waves are formed due to the reflection when waves meet vertical wall, therefore strong structures are needed to keep the wall stability under the serious wave attack. For the improvement of the working condit... Standing waves are formed due to the reflection when waves meet vertical wall, therefore strong structures are needed to keep the wall stability under the serious wave attack. For the improvement of the working condition and increase of the stability of the wall, the lower reflecting breakwaters have attracted close attention Reports mostly from Japanese researchers are often concerned with the wall of caisson equipped with open windows. In this paper a kind of hollow-pipe perforated breakwater is examined which waves may partially perforate into the harbour basin. The wave in front of the wall can only form partial standing wave and wave force is reduced obviously. And the theoretical calculation of wave force and analysis of wave force spectrum are all derived. Comparison between the results from theoretical calculation and hydraulic modeling shows reasonable agreement. 展开更多
关键词 perforated breakwater wave pressure
下载PDF
Experimental study on the wave pressure of liquefied silty soil 被引量:2
2
作者 HUANG Zhe XU Guo-hui +1 位作者 MENG Qing-sheng WANG Gang 《Marine Science Bulletin》 CAS 2016年第1期29-42,共14页
A number of studies focus on the pore-water pressure in seabed under thewaves and seabed instability induced by liquefaction, but rarely on the wave pressureof liquefied soil. In this paper, flume tests were performed... A number of studies focus on the pore-water pressure in seabed under thewaves and seabed instability induced by liquefaction, but rarely on the wave pressureof liquefied soil. In this paper, flume tests were performed at varying wave heightsunder both conditions of liquefied and stable seabed. The total pressures equal to soilpressures and pore water pressures were measured and analyzed at each depth. Theresults showed that the liquefied seabed had little difference from the stable seabed onthe peak pressures. However, the pressure amplitude of the liquefied soil increased byseveral to 10 times and decreased faster with increasing soil depths, compared with thestable soil. According to the experiments and further analysis, an empirical equationbetween pressure amplitude of the liquefied soil and wave parameters was put forwardunder the flume test. The results provide a valuable reference for engineeringapplications. 展开更多
关键词 silty soil wave pressure LIQUEFACTION water flume test
下载PDF
Dynamic Wave Pressures on Deeply Embedded Large Cylindrical Structures due to Random Waves 被引量:1
3
作者 刘海笑 唐云 周锡礽 《Transactions of Tianjin University》 EI CAS 2003年第1期21-28,共8页
The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response charact... The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response characteristics on deeply embedded large cylindrical structures under random waves, and accordingly to offer valuable findings for engineering, the authors designed wave flume experiments to investigate comparatively dynamic wave pressures on a single and on continuous cylinders with two different embedment depths in response to two wave spectra.The time histories of the water surface elevation and the corresponding dynamic wave pressures exerted on the cylinder were analyzed in the frequency domain. By calculating the transfer function and spectral density for dynamic wave pressures along the height and around the circumference of the cylinder, experimental results of the single cylinder were compared with the theoretical results based on the linear diffraction theory, and detailed comparisons were also carried out between the single and continuous cylinders. Some new findings and the corresponding analysis are reported in present paper. The investigation on continuous cylinders will be used in particular for reference in engineering applications because information is scarce on studying such kind of problem both analytically and experimentally. 展开更多
关键词 random wave deeply embedded large cylindrical structure single cylinder continuous cylinders dynamic wave pressure frequency domain
下载PDF
Simplified Method for Calculating Standing Wave Pressure on Vertical Breakwater
4
作者 Liu Liping Engineer, The Investigation and Design Institute of The Second Navigation Engineering Bureau, Ministry of Communications, P. R. of China, Wuhan 《China Ocean Engineering》 SCIE EI 1991年第4期483-492,共10页
Through numerical modeling, a kind of simplified calculating method for standing wave pressure on vertical face breakwater have been put forward. Not only the formulas proposed in this paper are simple in form and ver... Through numerical modeling, a kind of simplified calculating method for standing wave pressure on vertical face breakwater have been put forward. Not only the formulas proposed in this paper are simple in form and very easy in use, but also they possess continuity on the full range of standing wave. And more, the precision requiremennts of calculation can be satisfied to a certain extent in engineering practice. 展开更多
关键词 clapotics vertical breakwater wave height wave steepness Sainflou theory rubble-mound mumerical modelling correction factor wave pressure
下载PDF
Wave Pressure Distribution over the Breast Wall of Mound Breakwater of Small Ports
5
作者 Lu Wu JiangAssociate Professor, Hohai University, Nanjing 210024 《China Ocean Engineering》 SCIE EI 1994年第4期411-424,共14页
In this paper, the mechanism of the interaction between the breast wall of mound breakwater and waves is expounded, then some new views and the law of variation of horizontal and vertical wave pressure over the breast... In this paper, the mechanism of the interaction between the breast wall of mound breakwater and waves is expounded, then some new views and the law of variation of horizontal and vertical wave pressure over the breast wall are put forward. The results of this study have been adopted in the Specifications of Fishery Harbour Breakwater by the Ministry of Agricultures. 展开更多
关键词 breast wall wave pressure distribution uplift pressure horizontal pressure mound breakwater
下载PDF
Calculating Method and Verification of Wave Pressure Distribution on the Breast Wall of Mound Breakwater
6
作者 Lu Wujiang Associate Prof., Hohai University, 210024, Nanjing 《China Ocean Engineering》 SCIE EI 1992年第4期491-498,共8页
In this paper, the calculating charts and formulae about wave pressure on the breast wall are derived with seven parameters on the basis of physical model study. The verification shows that the charts agree with the e... In this paper, the calculating charts and formulae about wave pressure on the breast wall are derived with seven parameters on the basis of physical model study. The verification shows that the charts agree with the example, and are adopted in the Specifications of Fishery Harbours Breakwater by the Ministry of Agricultures. 展开更多
关键词 BREAKWATER breast wall wave pressure distribution safety factor
下载PDF
Experimental Study of Wave Pressure on a Breakwater Pier
7
作者 Pan, SH Xia, QY +1 位作者 Lin, SQ Xu, LH 《China Ocean Engineering》 SCIE EI 1999年第2期209-216,共8页
Test studies on the wave pressure on a breakwater pier show that the influence of transmissive wave pressure on the outside wall of the breakwater pier is considerable, when the width of the pier is not very large. Th... Test studies on the wave pressure on a breakwater pier show that the influence of transmissive wave pressure on the outside wall of the breakwater pier is considerable, when the width of the pier is not very large. The variations of transmissive wave pressure on the breakwater pier with different widths are compared and the relationship is obtained between relative transmitting distance b/L and wave pressure reduction factor K, which may be used in the design of similar breakwater piers. 展开更多
关键词 wave pressure BREAKWATER PIER
下载PDF
Study on the Propagation Law of Shock Wave Pressure in Tunnels with Different Materials
8
作者 CHEN Jiahui KONG Deren 《Instrumentation》 2022年第4期1-10,共10页
The propagation of shock wave pressure in the tunnel is greatly affected by the tunnel structure,shape,material and other factors,and there are great differences in the propagation law of shock wave pressure in differ... The propagation of shock wave pressure in the tunnel is greatly affected by the tunnel structure,shape,material and other factors,and there are great differences in the propagation law of shock wave pressure in different kinds of tunnels.In order to study the propagation law of shock wave pressure in tunnels with different materials,taking the long straight tunnel with the square section as an example,the AUTODYN software is used to simulate the explosion of TNT in the concrete,steel and granite tunnel,and study on the variation law of shock wave pressure in tunnels with different materials.By using dimensional analysis and combined with the results of numerical simulation,a mathematical model of the propagation law of shock wave pressure in the tunnel is established,and the effectiveness of the mathematical model is verified by making the explosion test of the warhead in the reinforce concrete tunnel.The results show that the same mass of TNT explodes in the tunnel with different materials,and the shock wave overpressure peak at the same measuring point is approximate in the near field.However,there is a significant difference in the middle-far fields from the explosion center,the shock wave overpressure peak in the steel tunnel is 20.76%and 34.82%higher than that of the concrete and the granite tunnel respectively,and the shock wave overpressure peak in the concrete tunnel is 24.91%higher than that in the granite tunnel.Through the experimental verification,getting the result that the maximum relative deviation between the measured value and the calculated value of the shock wave overpressure peak is 11.85%.Therefore,it is proved that the mathematical model can be used to predict the shock wave overpressure peak in the tunnel with different materials,and it can provide some reference for the power evaluation of warhead explosion in the tunnel. 展开更多
关键词 TUNNEL Shock wave pressure Numerical Simulation Propagation Law
下载PDF
Influence of pressure disturbance wave on dynamic response characteristics of liquid film seal for multiphase pump
9
作者 Qing-Ping Li Jin-Ya Zhang +1 位作者 Jia-Xiang Zhang Yong-Xue Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2048-2065,共18页
Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.... Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals. 展开更多
关键词 Multiphase pump Liquid film seal pressure disturbance wave Dynamic response characteristics
下载PDF
The influence of pressure waves in tidal gravity records
10
作者 Bernard Ducarme 《Geodesy and Geodynamics》 CSCD 2023年第1期15-25,共11页
For the reduction of atmospheric effects,observed gravity has initially been corrected by using the computed barometric admittance k of the in situ measured pressure,expressed in nms-2/hPa units and estimated by least... For the reduction of atmospheric effects,observed gravity has initially been corrected by using the computed barometric admittance k of the in situ measured pressure,expressed in nms-2/hPa units and estimated by least squares method.However,the local pressure changes alone cannot account for the atmospheric mass attraction and loading when the coherent pressure field exceeds a specific size,i.e.,with increasing periodicities.To overcome this difficulty,it is necessary to compute the total atmospheric effect at each station using the global pressure field.However,the direct subtraction of the total gravity effect,provided by the models of pressure correction,is not yet satisfactory for S2 and other tidal components,such as K2 and P1,which include solar heating pressure tides.This paper identifies the origin of the problem and presents strategies to obtain a satisfactory solution.First,we set up a difference vector between the tidal factors of M2 and S2 after correction of the pressure and ocean tides effects.This vector,hereafter denoted as RES,presents the advantage of being practically insensitive to calibration errors.The minimum discrepancy between the tidal parameters of M2 and S2 corresponds to the minimum of the RES vector norm d.Secondly we adopt the hybrid pressure correction method,separating the local and the global pressure contribution of the models and replacing the local contribution by the pressure measured at the station multiplied by an admittance kATM.We tested this procedure on 8 stations from the IGETS superconducting gravimeters network(former GGP network).For stations at an altitude lower than 1000 m,the value of dopt is always smaller than0.0005.The discrepancy between the tidal parameters of the M2 and S2 waves is always lower than0.05% on the amplitude factors and 0.025° on the phases.For these stations,a correlation exists between the altitude and the value kopt.The results at the three Central European stations Conrad,Pecny and Vienna are in excellent agreement(0.05%) with the DDW99NH model for all the main tidal waves. 展开更多
关键词 Atmospheric pressure waves Atmospheric pressure correction in tidal RECORDS Atmospheric pressure models ERA5 and MERRA-2
下载PDF
The mechanical response of piles with consideration of pile-soil interactions under a periodic wave pressure 被引量:6
11
作者 王环玲 徐卫亚 朱峰 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第6期921-929,共9页
The pile-soil interaction under wave loads is an extremely complex and difficult issue in engineering. In this study, a physical model test is designed based on the principle of the gravity similarity to obtain time h... The pile-soil interaction under wave loads is an extremely complex and difficult issue in engineering. In this study, a physical model test is designed based on the principle of the gravity similarity to obtain time histories of wave forces of unsteady regular waves, and to measure the magnitude and the distribution of wave forces acting on the piles. A numerical model and relevant numerical methods for the pile-soil contact surface are adopted based on the principles of elastic dynamics. For a practical project, the time histories of wave forces on the piles are obtained through physical model tests. The deformations of the piles in the pile-soil interactions and the distribution of the bending moment on the piles are studied. It is shown that, with the increase of the period of wave pressures, the absolute value of the horizontal displacement of the piles increases, the embedment depth of the piles increases, and the scope of influence of soils increases. The change of the bending moment on the piles is consistent with that of its theoretical results, and the proposed numerical method can very well simulate the properties of the piles. 展开更多
关键词 periodic wave pressure pile-soil interaction non-linear contact numerical calculation
原文传递
Influence of impulse waves generated by rocky landslides on the pressure exerted on bank slopes 被引量:1
12
作者 CAO Ting WANG Ping-yi +1 位作者 QIU Zhen-feng REN Jing-xuan 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1159-1176,共18页
Rocky landslides on river banks can result in the generation of ultra-high waves,which may destroy structures on the opposite bank.Existing methods to calculate the pressure on bank slopes under the effect of impulse ... Rocky landslides on river banks can result in the generation of ultra-high waves,which may destroy structures on the opposite bank.Existing methods to calculate the pressure on bank slopes under the effect of impulse waves generated by landslides are,however,few and of low precision.Therefore,in this study,a three-dimensional physical model test was conducted by taking into account factors such as landslide geometry parameters and the bank slope angle.The model test section was generalized on the basis of a certain section of the Three Gorges reservoir area as a prototype,after which the wave parameters and wave pressure acting on the bank slope were measured.Subsequently,the magnitude,acting point,and distribution of the pressure of the impulse waves generated by the rocky landslide upon the bank slope were determined.The distribution curve of the impact pressure was similar to that calculated using theСНиПⅡ57-75 formula,and the experimental pulsating pressure value was close to the value calculated using the Subgrade formula.Based on the test results,a power function of the relative pulsating pressure steepness with respect to the reciprocal of the wave steepness,relative water depth,and slope ratio was proposed.The acting point of the maximum pulsating pressure was found to be located near the still water level.Finally,an empirical formula for calculating the envelope of the maximum pulsating pressure distribution curve was proposed.These formulas can serve as a theoretical basis for the prediction of impulse wave pressure generated owing to landslides on bank slopes. 展开更多
关键词 Rocky landslide Impact pressure Pulsating pressure wave pressure steepness Distribution curve
下载PDF
Effect of the PTO damping force on the wave pressures on a 2-D wave energy converter 被引量:1
13
作者 赵玄烈 宁德志 +1 位作者 Malin G?teman 康海贵 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第5期863-870,共8页
The information of the wave loads on a wave energy device in operational waves is required for designing an efficient wave energy system with high survivability. It is also required as a reference for numerical modeli... The information of the wave loads on a wave energy device in operational waves is required for designing an efficient wave energy system with high survivability. It is also required as a reference for numerical modeling. In this paper, a novel system, which integrates an oscillating wave energy converter with a pile-restrained floating breakwater, is experimentally investigated in a 2-D wave flume. The measurements of the wave pressure on the wet-surface of the device are made as the function of the power take-off(PTO) damping force. It is shown that the wave pressure is significantly affected by the PTO system, in particular, at the edges, and the wave pressure varies under different wave conditions. From the results, conclusions can be drawn on how the PTO damping force and wave conditions affect the loads on the device, which is of engineering concern for constructing safe and reliable devices. 展开更多
关键词 wave energy converter power take-off(PTO) wave pressure experimental measurement
原文传递
Comparative investigations of pressure waves induced by trains passing through a tunnel with different speed modes 被引量:5
14
作者 ZHOU Miao-miao LIU Tang-hong +2 位作者 XIAYu-tao LIWen-hui CHEN Zheng-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2639-2653,共15页
Pressure waves induced by high-speed trains passing through a tunnel have adverse effects on train structures and passenger comfort. These adverse effects can be alleviated when the train passing through the tunnel wi... Pressure waves induced by high-speed trains passing through a tunnel have adverse effects on train structures and passenger comfort. These adverse effects can be alleviated when the train passing through the tunnel with a speed mode of deceleration. Thus, to investigate the effect of speed modes on pressure waves, three-dimensional compressible unsteady Reynolds-averaged Navier-Stokes simulations and the sliding mesh are used to simulate pressure waves on train surfaces and tunnel walls when trains passing through a tunnel with three different speed modes(a constant speed at350 km/h, a uniform deceleration from 350 to 300 km/h, and another uniform deceleration from 350 to 250 km/h).Compared with the constant speed, the peak-to-peak of the train surface pressure under the other two speed modes reaches a maximum difference of 11.0%. The maximum positive pressure difference of the tunnel wall under different speed modes is caused by the different attenuation of the friction effect when the train enters the tunnel, and the maximum difference is 12.8%. The difference of the maximum negative pressure on the tunnel wall is caused by the different speed and pressure wave intensity of the train arriving at the same measuring point in different speed modes,and the maximum difference is 15.8%. Hence, it can be concluded that a speed mode of deceleration for trains passing a tunnel can effectively alleviate the aerodynamic effect in the tunnel, especially for the pressure on the tunnel wall. 展开更多
关键词 high-speed trains tunnel aerodynamics pressure wave DECELERATION
下载PDF
Experimental study of transient pressure wave in the behind armor blunt trauma induced by different rifle bullets 被引量:5
15
作者 Rui-guo Han Yong-jie Qu +3 位作者 Wen-min Yan Bin Qin Shu Wang Jian-zhong Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期900-909,共10页
Pressure wave plays an important role in the occurrence of behind armor blunt trauma(BABT),and ballistic gelatin is widely used as a surrogate of biological tissue in the research of BABT.Comparison of pressure wave i... Pressure wave plays an important role in the occurrence of behind armor blunt trauma(BABT),and ballistic gelatin is widely used as a surrogate of biological tissue in the research of BABT.Comparison of pressure wave in the gelatin behind armor for different rifle bullets is lacking.The aim of this study was to observe dynamic changes in pressure wave induced by ballistic blunt impact on the armored gelatin block and to compare the effects of bullet type on the parameters of the transient pressure wave.The gelatin blocks protected with National Institute of Justice(NIJ) class III bulletproof armor were shot by three types of rifle bullet with the same level of impact energy.The transient pressure signals at five locations were recorded with pressure sensors and three parameters(maximum pressure,maximum pressure impulse,and the duration of the first positive phase) were determined and discussed.The results indicated that the waveform and the twin peak of transient pressure wave were not related to the bullet type.However,the values of pressure wave's parameters were significantly affected by bullet type.Additionally,the attenuation of pressure amplitude followed the similar law for the three ammunitions.These findings may be helpful to get some insight in the BABT and improve the structure design of bullet. 展开更多
关键词 Behind armor blunt trauma Ballistic gelatin pressure wave Body armor
下载PDF
Under the surface:Pressure-induced planetary-scale waves,volcanic lightning,and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha'apai volcano 被引量:8
16
作者 David A.Yuen Melissa A.Scruggs +11 位作者 Frank J.Spera Yingcai Zheng Hao Hu Stephen R.McNutt Glenn Thompson Kyle Mandli Barry R.Keller Songqiao Shawn Wei Zhigang Peng Zili Zhou Francesco Mulargia Yuichiro Tanioka 《Earthquake Research Advances》 CSCD 2022年第3期1-13,共13页
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha’apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and... We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha’apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached-at 58km-the Earth’s mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth’s atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasicontinuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient(wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous(~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot,volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 h, the eruptive volume and mass are estimated at 1.9 km^(3) and~2 900 Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma-seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters. 展开更多
关键词 Hunga Tonga-Hunga Ha'apai Atmospheric pressure wave Tsunami wave Volcanic lightning Phreatoplinian eruption
下载PDF
Influence of Plasma Pressure Fluctuation on RF Wave Propagation 被引量:1
17
作者 刘智惟 包为民 +2 位作者 李小平 刘东林 周辉 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第2期131-137,共7页
Pressure fluctuations in the plasma sheath from spacecraft reentry affect radiofrequency(RF) wave propagation.The influence of these fluctuations on wave propagation and wave properties is studied using methods deri... Pressure fluctuations in the plasma sheath from spacecraft reentry affect radiofrequency(RF) wave propagation.The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory,plasma theory,and electromagnetic wave theory.We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling.We analyzed the variations in reflection and transmission properties induced by pressure fluctuations.Our results show that,at the GPS frequency,if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection,transmission,and absorption properties.In extreme situations,the fluctuations can even cause blackout.At the Ka frequency,the influences are obvious when the waves are not totally transmitted.The influences are more pronounced at the GPS frequency than at the Ka frequency.This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves,as well as the influences of plasma fluctuations on wave propagation.Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations,the influences on link budgets should be taken into consideration. 展开更多
关键词 plasma sheath pressure fluctuation wave propagation
下载PDF
The Pressure Gradient Elastic Wave: Energy Transfer Process for Compressible Fluids with Pressure Gradient 被引量:1
18
作者 Yan Beliavsky 《Journal of Mechanics Engineering and Automation》 2013年第1期53-64,共12页
The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone w... The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone was -45 ℃ (the compressed air was pumped into the chamber at room temperature). The objective of this paper is to proof that this temperature separation effect cannot be explained by conventional heat transfer processes. To explain this phenomenon, the concept of PGEW (Pressure Gradient Elastic Waves) is proposed. PGEW are kind of elastic waves, which operate in compressible fluids with pressure gradients and density fluctuations. The result of PGEW propagation is a heat transfer from area of low pressure to high pressure zone. The physical model of a gas in a strong field of mass forces is proposed to substantiate the PGEW existence. This physical model is intended for the construction of a theory of PGEW. Understanding the processes associated with the PGEW permits the possibility of creating new devices for energy saving and low potential heat utilization, which have unique properties. 展开更多
关键词 PGEW pressure Gradient Elastic waves) temperature separation Ranque effect vortex chamber heat transfer energysaving low potential heat utilization.
下载PDF
Analysis of the pressure at a vertical barrier due to extreme wave run-up over variable bathymetry
19
作者 J.Brennan C.Clancy +2 位作者 J.Harrington R.Cox F.Dias 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第5期269-275,共7页
The pressure load at a vertical barrier caused by extreme wave run-up is analysed numerically, using the conformal mapping method to solve the two-dimensional free surface Euler equations in a pseudospectral model. Pr... The pressure load at a vertical barrier caused by extreme wave run-up is analysed numerically, using the conformal mapping method to solve the two-dimensional free surface Euler equations in a pseudospectral model. Previously this problem has been examined in the case of a flat-bottomed geometry. Here,the model is extended to consider a varying bathymetry. Numerical experiments show that an increasing step-like bottom profile may enhance the extreme run-up of long waves but result in a reduced pressure load. 展开更多
关键词 wave-wall interaction wave run-up pressure Extreme waves
下载PDF
An Experimental Study on the Wave-Induced Pore Water Pressure Change and Relative Influencing Factors in the Silty Seabed
20
作者 LI Anlong LUO Xiaoqiao +2 位作者 LIN Lin YE Qing LI Chunyu 《Journal of Ocean University of China》 SCIE CAS 2014年第6期911-916,共6页
In this study, a flume experiment was designed to investigate the characteristics of wave-induced pore water pressure in the soil of a silty seabed with different clay contents, soil layer buried depths and wave heigh... In this study, a flume experiment was designed to investigate the characteristics of wave-induced pore water pressure in the soil of a silty seabed with different clay contents, soil layer buried depths and wave heights respectively. The study showed that water waves propagating over silty seabed can induce significant change of pore water pressure, and the amplitude of pore pressure depends on depth of buried soil layer, clay content and wave height, which are considered as the three influencing factors for pore water pressure change. The pressure will attenuate according to exponential law with increase of soil layer buried depth, and the attenuation being more rapid in those soil layers with higher clay content and greater wave height. The pore pressure in silty seabed increases rapidly in the initial stage of wave action, then decreases gradually to a stable value, depending on the depth of buried soil layer, clay content and wave height. The peak value of pore pressure will increase if clay content or depth of buried soil layer decreases, or wave height increases. The analysis indicated that these soils with 5% clay content and waves with higher wave height produce instability in bed easier, and that the wave energy is mostly dissipated near the surface of soils and 5% clay content in soils can prevent pore pressure from dissipating immediately. 展开更多
关键词 wave action silty seabed pore water pressure development influencing factor
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部