Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investig...Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investigates the non-destructive capability of ultrasonic shear-wave spectroscopy in absolute stress evaluation of steel members.The effect of steel-member stress on the shear-wave amplitude spectrum is investigated,and a method of absolute stress measurement is proposed.Specifically,the process for evaluating absolute stress using shear-wave spectroscopy is summarized.Two steel members are employed to investigate the relationship between the stress and the frequency in shear-wave echo amplitude spectrum.The H-beam loaded by the universal testing machine is evaluated by the proposed method and the traditional strain gauge method for verification.The results show that the proposed method is effective and accurate for determining absolute stress in steel members.展开更多
Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR...Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress-strain relation is established with Preisach-Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR- NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure.展开更多
By using scanning tunneling microscopy(STM)/spectroscopy(STS), we systematically characterize the electronic structure of lightly doped 1 T-TiSe_2, and demonstrate the existence of the electronic inhomogeneity and the...By using scanning tunneling microscopy(STM)/spectroscopy(STS), we systematically characterize the electronic structure of lightly doped 1 T-TiSe_2, and demonstrate the existence of the electronic inhomogeneity and the pseudogap state. It is found that the intercalation induced lattice distortion impacts the local band structure and reduce the size of the charge density wave(CDW) gap with the persisted 2 × 2 spatial modulation. On the other hand, the delocalized doping electrons promote the formation of pseudogap. Domination by either of the two effects results in the separation of two characteristic regions in real space, exhibiting rather different electronic structures. Further doping electrons to the surface confirms that the pseudogap may be the precursor for the superconducting gap. This study suggests that the competition of local lattice distortion and the delocalized doping effect contribute to the complicated relationship between charge density wave and superconductivity for intercalated 1 T-TiSe_2.展开更多
The rheological properties of two specific waterborne polyurethane (PU) paints were studied by both macrorheological and microrheological methods. During the macrorheological measurement on a rotary rheometer, evapo...The rheological properties of two specific waterborne polyurethane (PU) paints were studied by both macrorheological and microrheological methods. During the macrorheological measurement on a rotary rheometer, evaporation of solvent cannot be totally excluded, which has an influence on the reliability of rheological results. So, the linear oscillatory frequency sweep results (storage and loss modulus versus frequency) and steady shear results (viscosity versus shear rate) got from the rotary rheometer measurement are only used for qualitative analysis. As the evaporation of solvent can be neglected during microrheological measurements on a diffusing wave spectroscope (DWS), the results of storage modulus (G3 and loss modulus (G'~) versus frequency are more credible than the results obtained from the rotary rheometer measurement. Thus, the results of G' and G" versus frequency from DWS measurements are used for quantitative analysis in this work. The G' for both of the waterborne PU paints are larger than G" at low frequency and that is opposite at high frequency in the experimental angular frequency range. The values of modulus at same frequency and viscosity at low shear rate for the two PU paints have apparent difference, which determines the difference of their application.展开更多
基金supported by the National Key Research and Development Program of China (No. 2016YFC0701102)the National Nature Science Foundation of China(No.51538003)the Shenzhen Technology Innovation Program (No.JSGG20150330103937411)
文摘Non-destructive measurement of absolute stress in steel members can provide useful information to optimize the design of steel structures and allow the safety of existing structures to be evaluated.This paper investigates the non-destructive capability of ultrasonic shear-wave spectroscopy in absolute stress evaluation of steel members.The effect of steel-member stress on the shear-wave amplitude spectrum is investigated,and a method of absolute stress measurement is proposed.Specifically,the process for evaluating absolute stress using shear-wave spectroscopy is summarized.Two steel members are employed to investigate the relationship between the stress and the frequency in shear-wave echo amplitude spectrum.The H-beam loaded by the universal testing machine is evaluated by the proposed method and the traditional strain gauge method for verification.The results show that the proposed method is effective and accurate for determining absolute stress in steel members.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB921504 and 2011CB707902)the National Natural Science Foundation of China(Grant No.11274166)+1 种基金the Funds from the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201401)the China Postdoctoral Science Foundation(Grant No.2013M531313)
文摘Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress-strain relation is established with Preisach-Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR- NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure.
基金supported by the Ministry of Science and Technology of China(2014CB921103,2013CB922103,2016YFA0300400,2015CB921202)the National Natural Science Foundation of China(11774149,11374140,11190023,11774152,51372112,11574133)+1 种基金NSF Jiangsu Province(BK20150012)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics
文摘By using scanning tunneling microscopy(STM)/spectroscopy(STS), we systematically characterize the electronic structure of lightly doped 1 T-TiSe_2, and demonstrate the existence of the electronic inhomogeneity and the pseudogap state. It is found that the intercalation induced lattice distortion impacts the local band structure and reduce the size of the charge density wave(CDW) gap with the persisted 2 × 2 spatial modulation. On the other hand, the delocalized doping electrons promote the formation of pseudogap. Domination by either of the two effects results in the separation of two characteristic regions in real space, exhibiting rather different electronic structures. Further doping electrons to the surface confirms that the pseudogap may be the precursor for the superconducting gap. This study suggests that the competition of local lattice distortion and the delocalized doping effect contribute to the complicated relationship between charge density wave and superconductivity for intercalated 1 T-TiSe_2.
基金financially supported by the National Natural Science Foundation of China(Nos.2127415251473168 an21234007)
文摘The rheological properties of two specific waterborne polyurethane (PU) paints were studied by both macrorheological and microrheological methods. During the macrorheological measurement on a rotary rheometer, evaporation of solvent cannot be totally excluded, which has an influence on the reliability of rheological results. So, the linear oscillatory frequency sweep results (storage and loss modulus versus frequency) and steady shear results (viscosity versus shear rate) got from the rotary rheometer measurement are only used for qualitative analysis. As the evaporation of solvent can be neglected during microrheological measurements on a diffusing wave spectroscope (DWS), the results of storage modulus (G3 and loss modulus (G'~) versus frequency are more credible than the results obtained from the rotary rheometer measurement. Thus, the results of G' and G" versus frequency from DWS measurements are used for quantitative analysis in this work. The G' for both of the waterborne PU paints are larger than G" at low frequency and that is opposite at high frequency in the experimental angular frequency range. The values of modulus at same frequency and viscosity at low shear rate for the two PU paints have apparent difference, which determines the difference of their application.