The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad...The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.展开更多
Qingshankou shale(Gulong area,China)exhibits strong acoustic anisotropy characteristics,posing significant challenges to its exploration and development.In this study,the five full elastic constants and multipole resp...Qingshankou shale(Gulong area,China)exhibits strong acoustic anisotropy characteristics,posing significant challenges to its exploration and development.In this study,the five full elastic constants and multipole response law of the Qingshankou shale were studied using experimental measurements.Analyses show that the anisotropy parametersϵandγin the study region are greater than 0.4,whereas the anisotropy parameterδis smaller,generally 0.1.Numerical simulations show that the longitudinal and transverse wave velocities of these strong anisotropic rocks vary significantly with inclination angle,and significant differences in group velocity and phase velocity are also present.Acoustic logging measures the group velocity in dipped boreholes;this differs from the phase velocity to some extent.As the dip angle increases,the longitudinal and SH wave velocities increase accordingly,while the qSV-wave velocity initially increases and then decreases,reaching its maximum value at a dip of approximately 40°.These results provide an effective guide for the correction and modeling of acoustic logging time differences in the region.展开更多
During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock p...During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock physics theory to available sonic velocity logs to know the distribution of gas hydrate at site NGHP-02-11 and NGHP-02-13.Rock physics modeling using sonic velocity at well location shows that gas hydrate is distributed mainly within the depth intervals of 150-265 m and 100 -215 mbsf at site NGHP-02-11 and NGHP-02-13,respectively,with an average saturation of about 4%of the pore space and the maximum concentration of about 40%of the pore space at 250 m depth at site NGHP-02-11,and at site NGHP-02-13 an average saturation of about 2%of the pore space and the maximum concentration of about 20%of the pore space at 246 m depth,as gas hydrate is distributed mainly within 100-246 mbsf at this site.Saturation of gas hydrate estimated from the electrical resistivity method using density derived porosity and electrical resistivity logs from Archie's empirical formula shows high saturation compared to that from the sonic log.However,estimates of hydrate saturation based on sonic P-wave velocity may differ significantly from that based on resistivity,because gas and hydrate have higher resistivity than conductive pore fluid and sonic P-wave velocity shows strong effect on gas hydrate as a small amount of gas reduces the velocity significantly while increasing velocity due to the presence of hydrate.At site NGHP-02-11,gas hydrate saturation is in the range of 15%e30%,in two zones between 150-180 and 245-265 mbsf.Site NGHP-02-012 shows a gas hydrate saturation of 20%e30%in the zone between 100 and 207 mbsf.Site NGHP-02-13 shows a gas hydrate saturation up to 30%in the zone between 215 and 246 mbsf.Combined observations from rock physics modeling and Archie’s approximation show the gas hydrate concentrations are relatively low(<4%of the pore space)at the sites of the Mahanadi Basin in the turbidite channel system.展开更多
基金the Australian Government through the Australian Research Council's Discovery Projects funding scheme(Project DP190101592)the National Natural Science Foundation of China(Grant Nos.41972280 and 52179103).
文摘The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.
基金supported by Major Science and Technology Special Project of China National Petroleum Corporation"Research on Large scale Storage and Production Increase and Exploration and Development Technology of Continental Shale Oil"(2023ZZ15)。
文摘Qingshankou shale(Gulong area,China)exhibits strong acoustic anisotropy characteristics,posing significant challenges to its exploration and development.In this study,the five full elastic constants and multipole response law of the Qingshankou shale were studied using experimental measurements.Analyses show that the anisotropy parametersϵandγin the study region are greater than 0.4,whereas the anisotropy parameterδis smaller,generally 0.1.Numerical simulations show that the longitudinal and transverse wave velocities of these strong anisotropic rocks vary significantly with inclination angle,and significant differences in group velocity and phase velocity are also present.Acoustic logging measures the group velocity in dipped boreholes;this differs from the phase velocity to some extent.As the dip angle increases,the longitudinal and SH wave velocities increase accordingly,while the qSV-wave velocity initially increases and then decreases,reaching its maximum value at a dip of approximately 40°.These results provide an effective guide for the correction and modeling of acoustic logging time differences in the region.
文摘During the Indian National Gas Hydrate Program(NGHP)Expedition 02,Logging-while-drilling(LWD)logs were acquired at three sites(NGHP-02-11,NGHP-02-12,and NGHP-02-13)across the Mahanadi Basin in area A.We applied rock physics theory to available sonic velocity logs to know the distribution of gas hydrate at site NGHP-02-11 and NGHP-02-13.Rock physics modeling using sonic velocity at well location shows that gas hydrate is distributed mainly within the depth intervals of 150-265 m and 100 -215 mbsf at site NGHP-02-11 and NGHP-02-13,respectively,with an average saturation of about 4%of the pore space and the maximum concentration of about 40%of the pore space at 250 m depth at site NGHP-02-11,and at site NGHP-02-13 an average saturation of about 2%of the pore space and the maximum concentration of about 20%of the pore space at 246 m depth,as gas hydrate is distributed mainly within 100-246 mbsf at this site.Saturation of gas hydrate estimated from the electrical resistivity method using density derived porosity and electrical resistivity logs from Archie's empirical formula shows high saturation compared to that from the sonic log.However,estimates of hydrate saturation based on sonic P-wave velocity may differ significantly from that based on resistivity,because gas and hydrate have higher resistivity than conductive pore fluid and sonic P-wave velocity shows strong effect on gas hydrate as a small amount of gas reduces the velocity significantly while increasing velocity due to the presence of hydrate.At site NGHP-02-11,gas hydrate saturation is in the range of 15%e30%,in two zones between 150-180 and 245-265 mbsf.Site NGHP-02-012 shows a gas hydrate saturation of 20%e30%in the zone between 100 and 207 mbsf.Site NGHP-02-13 shows a gas hydrate saturation up to 30%in the zone between 215 and 246 mbsf.Combined observations from rock physics modeling and Archie’s approximation show the gas hydrate concentrations are relatively low(<4%of the pore space)at the sites of the Mahanadi Basin in the turbidite channel system.