期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Joint waveform selection and power allocation algorithm in manned/unmanned aerial vehicle hybrid swarm based on chance-constraint programming
1
作者 ZHANG Yuanshi PAN Minghai +2 位作者 LONG Weijun LI Hua HAN Qinghua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期551-562,共12页
In this paper, we propose a joint waveform selection and power allocation(JWSPA) strategy based on chance-constraint programming(CCP) for manned/unmanned aerial vehicle hybrid swarm(M/UAVHS) tracking a single target. ... In this paper, we propose a joint waveform selection and power allocation(JWSPA) strategy based on chance-constraint programming(CCP) for manned/unmanned aerial vehicle hybrid swarm(M/UAVHS) tracking a single target. Accordingly,the low probability of intercept(LPI) performance of system can be improved by collaboratively optimizing transmit power and waveform. For target radar cross section(RCS) prediction, we design a random RCS prediction model based on electromagnetic simulation(ES) of target. For waveform selection, we build a waveform library to adaptively manage the frequency modulation slope and pulse width of radar waveform. For power allocation,the CCP is employed to balance tracking accuracy and power resource. The Bayesian Cramér-Rao lower bound(BCRLB) is adopted as a criterion to measure target tracking accuracy. The hybrid intelli gent algorithms, in which the stochastic simulation is integrated into the genetic algorithm(GA), are used to solve the stochastic optimization problem. Simulation results demonstrate that the proposed JWSPA strategy can save more transmit power than the traditional fixed waveform scheme under the same target tracking accuracy. 展开更多
关键词 multistatic radar system(MRS) target tracking manned/unmanned aerial vehicle hybrid swarm(M/UAVHS) power allocation waveform selection
下载PDF
An adaptive waveform-detection threshold joint optimization method for target tracking 被引量:5
2
作者 王宏强 夏洪恩 +1 位作者 程永强 王璐璐 《Journal of Central South University》 SCIE EI CAS 2013年第11期3057-3064,共8页
The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The tr... The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The transmitted waveforms and detection threshold are adaptively selected to enhance the tracking performance.The modified Riccati equation is adopted to predict the error covariance which is used as the criterion function,while the optimization problem is solved through the genetic algorithm(GA).The detection probability,false alarm probability and measurement noise covariance are all considered together,which significantly improves the tracking performance of the joint detection and tracking system.Simulation results show that the proposed adaptive waveform-detection threshold joint optimization method outperforms the adaptive threshold method and the fixed parameters method,which will reduce the tracking error.The average reduction of range error between the adaptive joint method and the fixed parameters method is about 0.6 m,while that between the adaptive joint method and the adaptive threshold only method is about 0.3 m.Similar error reduction occurs for the velocity error and acceleration error. 展开更多
关键词 cognitive radar adaptive waveform selection target tracking joint optimization detection-tracking system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部