Waveguide directional couplers working at 5.712/11.9924 GHz are developed. Even holes symmetrical to the structure are drilled along the central line of the narrow-wall of the waveguide, which are used to couple the e...Waveguide directional couplers working at 5.712/11.9924 GHz are developed. Even holes symmetrical to the structure are drilled along the central line of the narrow-wall of the waveguide, which are used to couple the electromagnetic power from the main-waveguide to the sub-waveguide. The final prototypes have achieved satisfactory performances of high-power, ultra-high-vacuum and high-directivity. The microwave measurement results are also qualified.展开更多
The scalar two-dimensional finite difference time domain (FDTD) method is applied to simulate the mode field distribution of TE 0 of the waveguide grating coupler. Computer simulation shows that the same stable mode f...The scalar two-dimensional finite difference time domain (FDTD) method is applied to simulate the mode field distribution of TE 0 of the waveguide grating coupler. Computer simulation shows that the same stable mode field distribution pattern is obtained through the different kinds of driving sources. It is found that the optical field mode is determined by waveguide structure and optical wavelength other than the driving source.According to the mode field distribution, the optimum coupling efficiency can be predicted. Compared with another numerical methods,the CPU-time and memory elements of computer used by FDTD are much less.展开更多
A 3-dB paired interference (PI) optical coupler in silicon-on-insulator (SOI) based on rib waveguides with trapezoidal cross section was designed with simulation by a modified finite-difference beam propagation me...A 3-dB paired interference (PI) optical coupler in silicon-on-insulator (SOI) based on rib waveguides with trapezoidal cross section was designed with simulation by a modified finite-difference beam propagation method (FD-BPM) and fabricated by potassium hydroxide (KOH) anisotropic chemical wet etching. Theoretically, tolerances of width, length, and port distance are more than 1, 100, and 1 μm, respectively. Smooth interface was obtained with the propagation loss of 1.1 dB/cm at the wavelength of 1.55 μm. The coupler has a good uniformity of 0.2 dB and low excess loss of less than 2 dB.展开更多
We fnrther study theoretically the properties of switching and Fano resonance in a hybrid nanosystem consisting of two quantum dots (QDs) and a metal nanowire via exciton-plasmon interaction. The transmission of the...We fnrther study theoretically the properties of switching and Fano resonance in a hybrid nanosystem consisting of two quantum dots (QDs) and a metal nanowire via exciton-plasmon interaction. The transmission of the single plasmon can be switched on or off in a wide-frequency region by adjusting the transition frequencies of the QDs and the phase of the propagating plasmon. Specifically, the dynamical mechanism of Fano-type transmission is further revealed and analyzed in detail.展开更多
This paper presents a mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands.To show the necessity of improving the mechanical properties of the coupler’s branch in submil...This paper presents a mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands.To show the necessity of improving the mechanical properties of the coupler’s branch in submillimeter and terahertz bands,a comprehensive study regarding the displacement of hybrid branch variation with varying width-length ratio and height-length ratio has been completed.In addition,a modified 3-dB waveguide hybrid coupler is designed and presented.Compared with the traditional branch structure,the proposed hybrid consists of a modified middle branch with circular cutouts at the top and bottom on both sides instead of the traditional rectangle branch,which increases the branch size and improves its mechanical reliability while achieving the same performance.Simulation results show that the deformation of the modified hybrid branch is 22%less than those of other traditional structure designs under the same stress.In practice,a vibration experiment is set up to verify the mechanical reliability of hybrid couplers.Measurement results show that the experiment deteriorates the coupling performance.Experimental results verify that the performance of the novel structure coupler is better than that of a traditional structure branch hybrid coupler under the same electrical properties.展开更多
We proposed a two-coupled microsphere resonator structure as the element of angular velocity sensing under the Sagnac effect.We analyzed the theoretical model of the two coupled microspheres,and derived the coupled-re...We proposed a two-coupled microsphere resonator structure as the element of angular velocity sensing under the Sagnac effect.We analyzed the theoretical model of the two coupled microspheres,and derived the coupled-resonatorinduced transparency(CRIT) transfer function,the effective phase shift,and the group delay.Experiments were also carried out to demonstrate the CRIT phenomenon in the two-coupled microsphere resonator structure.We calculated that the group index of the two-coupled sphere reaches n_g = 180.46,while the input light at a wavelength of 1550 nm.展开更多
A novel three-component hybrid-integrated optical accelerometer based on LiNbO3 photoelastic waveguide is presented. The photoelasitcity of LiNbO3 due to three-dimensional stress states is obtained analytically. We an...A novel three-component hybrid-integrated optical accelerometer based on LiNbO3 photoelastic waveguide is presented. The photoelasitcity of LiNbO3 due to three-dimensional stress states is obtained analytically. We analyze the level of sensitivity to cross-axis accelerations which is a very important parameter for three-component accelerometer. Theoretically, the designed three-component hybrid-integrated optical accelerometer has a transverse sensitivity ratio (TSR) of zero. The sensor has a high natural frequency of 3.5 kHz and a linear broad working freauency.展开更多
An ultra-small integrated photonic circuit has been proposed,which incorporates a high-quality-factor passive micro-ring resonator(MR) linked to a vertical grating coupler on a standard silicon-on-insulator(SOI) s...An ultra-small integrated photonic circuit has been proposed,which incorporates a high-quality-factor passive micro-ring resonator(MR) linked to a vertical grating coupler on a standard silicon-on-insulator(SOI) substrate.The experimental results demonstrate that the MR propagation loss is 0.532 dB/cm with a 10μm radius ring resonator,the intrinsic quality factor is as high as 202.000,the waveguide grating wavelength response curve is a 1 dB bandwidth of 40 nm at 1540 nm telecommunication wavelengths,and the measured fiber-to-fiber coupling loss is 10 dB.Furthermore,the resonator wavelength temperature dependence of the 450 nm wide micro-ring resonator is 54.1 pm/℃.Such vertical grating coupler and low loss MR-integrated components greatly promote a key element in biosensors and high-speed interconnect communication applications.展开更多
Nonadiabatic holonomic quantum transformations(NHQTs)have attracted wide attention and have been applied in many aspects of quantum computation,whereas related research is usually limited to the field of quantum physi...Nonadiabatic holonomic quantum transformations(NHQTs)have attracted wide attention and have been applied in many aspects of quantum computation,whereas related research is usually limited to the field of quantum physics.Here we bring NHQTs into constructing a unidirectional acoustic metamaterial(UDAM)for shaping classical beams.The UDAM is made up of an array of three-waveguide couplers,where the propagation of acoustic waves mimics the evolution of NHQTs.The excellent agreement among analytical predictions,numerical simulations,and experimental measurements confirms the great applicability of NHQTs in acoustic metamaterial engineering.The present work extends research on NHQTs from quantum physics to the field of classical waves for designing metamaterials with simple structures and may pave a new way to design UDAMs that would be of potential applications in acoustic isolation,communication,and stealth.展开更多
An ultra-broadband and fabrication-tolerant silicon polarization rotator splitter is proposed in this Letter.Benefitting from the broadband and low-loss characteristics of the bi-level taper and counter-tapered couple...An ultra-broadband and fabrication-tolerant silicon polarization rotator splitter is proposed in this Letter.Benefitting from the broadband and low-loss characteristics of the bi-level taper and counter-tapered coupler,the designed device has a simulated insertion loss and crosstalk of less than 0.2 and -15 dB in the waveband from 1290 to 1610 nm. These characteristics make it valuable in applications with large bandwidth requirements, such as full-grid Coarse wavelength division multiplexer(CWDM) and diplexer/triplexer fiber-to-the-home systems.The fabrication tolerance of the design is also analyzed, showing that the device performance is quite stable with normal manufacturing errors in silicon photonics foundries.展开更多
文摘Waveguide directional couplers working at 5.712/11.9924 GHz are developed. Even holes symmetrical to the structure are drilled along the central line of the narrow-wall of the waveguide, which are used to couple the electromagnetic power from the main-waveguide to the sub-waveguide. The final prototypes have achieved satisfactory performances of high-power, ultra-high-vacuum and high-directivity. The microwave measurement results are also qualified.
文摘The scalar two-dimensional finite difference time domain (FDTD) method is applied to simulate the mode field distribution of TE 0 of the waveguide grating coupler. Computer simulation shows that the same stable mode field distribution pattern is obtained through the different kinds of driving sources. It is found that the optical field mode is determined by waveguide structure and optical wavelength other than the driving source.According to the mode field distribution, the optimum coupling efficiency can be predicted. Compared with another numerical methods,the CPU-time and memory elements of computer used by FDTD are much less.
基金This work was supported in part by the National Natural Science Foundation of China (No.60336010)the"973"Plan of China (No.G2000-03-66) the"863"Program of China (No.2002AA312060).
文摘A 3-dB paired interference (PI) optical coupler in silicon-on-insulator (SOI) based on rib waveguides with trapezoidal cross section was designed with simulation by a modified finite-difference beam propagation method (FD-BPM) and fabricated by potassium hydroxide (KOH) anisotropic chemical wet etching. Theoretically, tolerances of width, length, and port distance are more than 1, 100, and 1 μm, respectively. Smooth interface was obtained with the propagation loss of 1.1 dB/cm at the wavelength of 1.55 μm. The coupler has a good uniformity of 0.2 dB and low excess loss of less than 2 dB.
基金supported by the National Natural Science Foundation of China(Grant No.11174372)
文摘We fnrther study theoretically the properties of switching and Fano resonance in a hybrid nanosystem consisting of two quantum dots (QDs) and a metal nanowire via exciton-plasmon interaction. The transmission of the single plasmon can be switched on or off in a wide-frequency region by adjusting the transition frequencies of the QDs and the phase of the propagating plasmon. Specifically, the dynamical mechanism of Fano-type transmission is further revealed and analyzed in detail.
基金Project supported by the National Natural Science Foundation of China(Nos.61771116 and 62022022)the National Key R&D Program of China(No.2018YFB1801502)the China Postdoctoral Science Foundation(No.2021TQ0057)。
文摘This paper presents a mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands.To show the necessity of improving the mechanical properties of the coupler’s branch in submillimeter and terahertz bands,a comprehensive study regarding the displacement of hybrid branch variation with varying width-length ratio and height-length ratio has been completed.In addition,a modified 3-dB waveguide hybrid coupler is designed and presented.Compared with the traditional branch structure,the proposed hybrid consists of a modified middle branch with circular cutouts at the top and bottom on both sides instead of the traditional rectangle branch,which increases the branch size and improves its mechanical reliability while achieving the same performance.Simulation results show that the deformation of the modified hybrid branch is 22%less than those of other traditional structure designs under the same stress.In practice,a vibration experiment is set up to verify the mechanical reliability of hybrid couplers.Measurement results show that the experiment deteriorates the coupling performance.Experimental results verify that the performance of the novel structure coupler is better than that of a traditional structure branch hybrid coupler under the same electrical properties.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51225504,61171056,and 91123036)the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province,China
文摘We proposed a two-coupled microsphere resonator structure as the element of angular velocity sensing under the Sagnac effect.We analyzed the theoretical model of the two coupled microspheres,and derived the coupled-resonatorinduced transparency(CRIT) transfer function,the effective phase shift,and the group delay.Experiments were also carried out to demonstrate the CRIT phenomenon in the two-coupled microsphere resonator structure.We calculated that the group index of the two-coupled sphere reaches n_g = 180.46,while the input light at a wavelength of 1550 nm.
基金supported by the National Natural Science Foundation of China(No.40774067)the Applied Basic Research Program of Sichuan Province(No.07JY029-135)
文摘A novel three-component hybrid-integrated optical accelerometer based on LiNbO3 photoelastic waveguide is presented. The photoelasitcity of LiNbO3 due to three-dimensional stress states is obtained analytically. We analyze the level of sensitivity to cross-axis accelerations which is a very important parameter for three-component accelerometer. Theoretically, the designed three-component hybrid-integrated optical accelerometer has a transverse sensitivity ratio (TSR) of zero. The sensor has a high natural frequency of 3.5 kHz and a linear broad working freauency.
基金supported by the National Basic Research Program of China(No.2009CB326206)the National Natural Science Foundation of China(Nos.61076111,50975266)+2 种基金the Key Laboratory Fund of China(No.9140C1204040909)the Graduate Innovation Project of China (No.20103083)the Fund for Top Young Academic Leaders of Higher Learning Institutions of Shanxi(TYAL),China
文摘An ultra-small integrated photonic circuit has been proposed,which incorporates a high-quality-factor passive micro-ring resonator(MR) linked to a vertical grating coupler on a standard silicon-on-insulator(SOI) substrate.The experimental results demonstrate that the MR propagation loss is 0.532 dB/cm with a 10μm radius ring resonator,the intrinsic quality factor is as high as 202.000,the waveguide grating wavelength response curve is a 1 dB bandwidth of 40 nm at 1540 nm telecommunication wavelengths,and the measured fiber-to-fiber coupling loss is 10 dB.Furthermore,the resonator wavelength temperature dependence of the 450 nm wide micro-ring resonator is 54.1 pm/℃.Such vertical grating coupler and low loss MR-integrated components greatly promote a key element in biosensors and high-speed interconnect communication applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.11675046,21973023,11804308)the Program for Innovation Research of Science in Harbin Institute of Technology(Grant No.A201412)+1 种基金the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(Grant No.LBH-Q15060)the Natural Science Foundation of Henan Province(Grant No.202300410481)。
文摘Nonadiabatic holonomic quantum transformations(NHQTs)have attracted wide attention and have been applied in many aspects of quantum computation,whereas related research is usually limited to the field of quantum physics.Here we bring NHQTs into constructing a unidirectional acoustic metamaterial(UDAM)for shaping classical beams.The UDAM is made up of an array of three-waveguide couplers,where the propagation of acoustic waves mimics the evolution of NHQTs.The excellent agreement among analytical predictions,numerical simulations,and experimental measurements confirms the great applicability of NHQTs in acoustic metamaterial engineering.The present work extends research on NHQTs from quantum physics to the field of classical waves for designing metamaterials with simple structures and may pave a new way to design UDAMs that would be of potential applications in acoustic isolation,communication,and stealth.
基金supported by the National Natural Science Foundation of China(Nos.61275112,61475180,and 11204340)the Science and Technology Commission of Shanghai Municipality(No.14JC1407600)the Shanghai Natural and Science Foundation(No.16ZR1442600)
文摘An ultra-broadband and fabrication-tolerant silicon polarization rotator splitter is proposed in this Letter.Benefitting from the broadband and low-loss characteristics of the bi-level taper and counter-tapered coupler,the designed device has a simulated insertion loss and crosstalk of less than 0.2 and -15 dB in the waveband from 1290 to 1610 nm. These characteristics make it valuable in applications with large bandwidth requirements, such as full-grid Coarse wavelength division multiplexer(CWDM) and diplexer/triplexer fiber-to-the-home systems.The fabrication tolerance of the design is also analyzed, showing that the device performance is quite stable with normal manufacturing errors in silicon photonics foundries.