Internet and broadband applications driven by data traffic demand have become key dri- vers for satellite constellations. The key technology to satisfy the high capacity requirements between satellites is optical sate...Internet and broadband applications driven by data traffic demand have become key dri- vers for satellite constellations. The key technology to satisfy the high capacity requirements between satellites is optical satellite networks by means of wavelength division multiplexing inter- satellite links (ISLs) with wavelength routing (WDM-OSN). Due to the limited optical amplifier bandwidth onboard the satellite, it is important to minimize the wavelength requirements to provi- sion requests. However, ISLs should be dynamically established and deleted for each satellite according to its visible satellites. Furthermore, different link assignments will result in different topologies, hence yielding different routings and wavelength assignments. Thus, a perfect match model-based link assignment scheme (LAS-PMM) is proposed to design an appropriate topology such that shorter path could be routed and less wavelengths could be assigned for each ISL along the path. Finally, simulation results show that in comparison to the regular Manhattan street net- work (MSN) topology, wavelength requirements and average end-to-end delay based on the topol- ogy generated by LAS-PMM could be reduced by 24.8% and 12.4%, respectively.展开更多
In this paper, a multidimensional tuning method of the silica microcapillary resonator(MCR) is proposed and demonstrated whereby the extinction ratio(ER) as well as the resonant wavelength can be individually controll...In this paper, a multidimensional tuning method of the silica microcapillary resonator(MCR) is proposed and demonstrated whereby the extinction ratio(ER) as well as the resonant wavelength can be individually controlled.An ER tuning range of up to 17 d B and a maximum tuning sensitivity of 0.3 d B/μm are realized due to the tapered profile of the silica optical microfiber(MF) when the MF is adjusted along its axial direction. Compared to direct tuning of the coupling gap, this method could lower the requirement for the resolution of displacement stage to micrometers. When the MF is adjusted along the axial direction of the silica microcapillary, a resonance shift of 3.06 nm and maximum tuning sensitivity of 0.01 nm/μm are achieved. This method avoids the use of an applied external field to control the silica microresonators. Moreover, when air is replaced by ethanol and water in the core of the silica microcapillary, a maximum resonance shift of 5.22 nm is also achieved to further enlarge the resonance tuning range. Finally, a microbubble resonator with a higher Q factor is also fabricated to achieve an ER tuning range of 8.5 d B. Our method fully takes advantage of the unique structure of the MCR to separately and easily tune its key parameters, and may broaden its applications in optical signal processing and sensing.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61471238,61433009)
文摘Internet and broadband applications driven by data traffic demand have become key dri- vers for satellite constellations. The key technology to satisfy the high capacity requirements between satellites is optical satellite networks by means of wavelength division multiplexing inter- satellite links (ISLs) with wavelength routing (WDM-OSN). Due to the limited optical amplifier bandwidth onboard the satellite, it is important to minimize the wavelength requirements to provi- sion requests. However, ISLs should be dynamically established and deleted for each satellite according to its visible satellites. Furthermore, different link assignments will result in different topologies, hence yielding different routings and wavelength assignments. Thus, a perfect match model-based link assignment scheme (LAS-PMM) is proposed to design an appropriate topology such that shorter path could be routed and less wavelengths could be assigned for each ISL along the path. Finally, simulation results show that in comparison to the regular Manhattan street net- work (MSN) topology, wavelength requirements and average end-to-end delay based on the topol- ogy generated by LAS-PMM could be reduced by 24.8% and 12.4%, respectively.
基金National Natural Science Foundation of China(NSFC)(61307075)Specialized Research Fund for the Doctoral Program of Higher Education of China(20120142120067)+1 种基金Fundamental Research Funds for the Central Universities(HUST:2014TS019)Director Fund of Wuhan National Laboratory for Optoelectronics
文摘In this paper, a multidimensional tuning method of the silica microcapillary resonator(MCR) is proposed and demonstrated whereby the extinction ratio(ER) as well as the resonant wavelength can be individually controlled.An ER tuning range of up to 17 d B and a maximum tuning sensitivity of 0.3 d B/μm are realized due to the tapered profile of the silica optical microfiber(MF) when the MF is adjusted along its axial direction. Compared to direct tuning of the coupling gap, this method could lower the requirement for the resolution of displacement stage to micrometers. When the MF is adjusted along the axial direction of the silica microcapillary, a resonance shift of 3.06 nm and maximum tuning sensitivity of 0.01 nm/μm are achieved. This method avoids the use of an applied external field to control the silica microresonators. Moreover, when air is replaced by ethanol and water in the core of the silica microcapillary, a maximum resonance shift of 5.22 nm is also achieved to further enlarge the resonance tuning range. Finally, a microbubble resonator with a higher Q factor is also fabricated to achieve an ER tuning range of 8.5 d B. Our method fully takes advantage of the unique structure of the MCR to separately and easily tune its key parameters, and may broaden its applications in optical signal processing and sensing.