期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
采用极限学习机的流场积分吸光度快速测量方法 被引量:2
1
作者 姜雅晶 宋俊玲 +3 位作者 饶伟 王凯 娄登程 郭建宇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第5期1346-1352,共7页
发动机是飞行器动力系统的核心组件,发动机流场的动态监测可以掌握发动机内部流场的燃烧情况,对于飞行器状态监测和性能评估具有重要意义。拥有先进的诊断技术是发展发动机技术的基础,也是研制新型航空航天飞行器的必要条件之一。激光... 发动机是飞行器动力系统的核心组件,发动机流场的动态监测可以掌握发动机内部流场的燃烧情况,对于飞行器状态监测和性能评估具有重要意义。拥有先进的诊断技术是发展发动机技术的基础,也是研制新型航空航天飞行器的必要条件之一。激光吸收光谱技术可以实现燃烧场气体参数的测量,在发动机严苛的流场环境中,吸收光谱波长调制技术(WMS)可以提高信噪比。但基于WMS解算积分吸光度和温度、浓度二维分布的方法都是以模拟退火算法(SA)为核心,因此存在执行时间较长的问题。根据随时间演化的流场光谱参数、光线分布为固定信息这一内在关联性,以及已有的WMS方法可以计算积分吸光度值,采用机器学习方法建立谐波信号(S_(2f/1f))与积分吸光度(A)的模型,选择极限学习机算法(ELM),其训练时间短,预测结果快。利用神经网络可以逼近真值的特性,仿真确定光线布局下不同流场模型的S_(2f/1f)和A,构造数据集对神经网络开展模型训练。在数值仿真验证中,共仿真2000组数据集,随机选取1800组作为训练集训练模型,其余200组作为预测集,统计测试集的预测积分吸光度平均相对误差为1.058%,决定系数平均值为0.999,验证了训练模型的可靠性。为进一步探究模型的抗噪声性,采用的方法是在测试集S_(2f/1f)数据集中分别加入3%,5%和10%的随机噪声,统计预测积分吸光度平均相对误差分别为3.1%,4.6%和8.1%,这一结果可以表明ELM具有较好的抗噪声性。基于该方法,在直连式超燃冲压发动机上开展验证实验,实验有效时长为5 s,采集数据约10 GB,分别采用ELM和WMS两种方法解算积分吸光度,对比发现:结果基本一致,且相比执行时间数小时的WMS方法,ELM预测积分吸光度耗时仅为15 s左右,实现了发动机流场积分吸光度的快速测量。 展开更多
关键词 激光吸收光谱技术 波长调制 机器学习 极限学习机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部