Phase spectrum estimation of the seismic wavelet is an important issue in high-resolution seismic data processing and interpretation. On the basis of two patterns of constant-phase rotation and root transform for wave...Phase spectrum estimation of the seismic wavelet is an important issue in high-resolution seismic data processing and interpretation. On the basis of two patterns of constant-phase rotation and root transform for wavelet phase spectrum variation, we introduce six sparse criteria, including Lu’s improved kurtosis criterion, the parsimony criterion, exponential transform criterion, Sech criterion, Cauchy criterion, and the modified Cauchy criterion, to phase spectrum estimation of the seismic wavelet, obtaining an equivalent effect to the kurtosis criterion. Through numerical experiments, we find that when the reflectivity is not a sparse sequence, the estimated phase spectrum of the seismic wavelet based on the criterion function will deviate from the true value. In order to eliminate the influence of non-sparse reflectivity series in a single trace, we apply the method to the multi-trace seismogram, improving the accuracy of seismic wavelet phase spectrum estimation.展开更多
In this paper, we present wavelet transformation method to measure interstation phase velocity. We use Morlet wavelet function as mother wavelet to filter two seismograms at various period of interest, and correlate t...In this paper, we present wavelet transformation method to measure interstation phase velocity. We use Morlet wavelet function as mother wavelet to filter two seismograms at various period of interest, and correlate the wavelet filtered seismograms to form cross-correlogram. If both wavelet filtered signals are in phase at that period, the phase of the cross-correlogram is a minimum. Using 3-spline interpolation to transform cross-correlation matrix to a phase velocity verse period image, it is convenient for us to measure interstation phase velocity.展开更多
This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave loc...This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data.展开更多
Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting...Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting from the multiscale analysis,various types of noises can be identified according to their characteristics in different scales,and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied,a default threshold strategy through which the threshold value is determined by the noise intensity,or a ΦDP penalty threshold strategy through which a special value is designed for ΦDP de-noising.Then,a hard-or soft-threshold function,depending on the de-noising purpose,is selected to reconstruct the signal.Combining the three noise suppression strategies and the two signal reconstruction functions,and without loss of generality,two schemes are presented to verify the de-noising effect by dbN wavelets:(1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ΦDP penalty threshold strategy with the soft threshold function scheme (PPSS).Furthermore,the wavelet de-noising is compared with the mean,median,Kalman,and finite impulse response (FIR) methods with simulation data and two actual cases.The results suggest that both of the two schemes perform well,especially when ΦDP data are simultaneously polluted by various scales and types of noises.A slight difference is that the PSS method can retain more detail,and the PPSS can smooth the signal more successfully.展开更多
BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves ...BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves during epileptic discharge.OBJECTIVE: To extract multi-scale phase average waveforms from childhood absence epilepsy EEG signals between time and frequency domains using wavelet transformation, and to compare EEG signals of absence seizure with pre-epileptic seizure and normal children, and to quantify multi-scale phase average waveforms from childhood absence epilepsy EEG signals. DESIGN, TIME AND SETTING: The case-comparative experiment was performed at the Department of Neuroelectrophysiology, Tianjin Medical University from August 2002 to May 2005. PARTICIPANTS: A total of 15 patients with childhood absence epilepsy from the General Hospital of Tianjin Medical University were enrolled in the study. The patients were not administered anti-epileptic drugs or sedatives prior to EEG testing. In addition, 12 healthy, age- and gender-matched children were also enrolled.METHODS: EEG signals were tested on 15 patients with childhood absence epilepsy and 12 normal children. Epileptic discharge signals during clinical and subclinical seizures were collected 10 and 20 times, respectively. The collected EEG signals were treated with wavelet transformation to extract multi-scale characteristics during absence epilepsy seizure using a conditional sampling method. Multi-scale phase average waveforms were collected using a conditional phase averaging technique. Amplitude of phase average waveform from EEG signals of epilepsy seizure, subclinical epileptic discharge, and EEG signals of normal children were compared and statistically analyzed in the first half-cycle.MAIN OUTCOME MEASURES: Multi-scale wavelet coefficient and the evolution of EEG signals were observed during childhood absence epilepsy seizures using wavelet transformation. Multi-scale phase average waveforms from EEG signals were observed using a conditional sampling method and phase averaging technique.RESULTS: Multi-scale characteristics of EEG signals demonstrated that 12-scale (3 Hz) rhythmical activity was significantly enhanced during childhood absence epilepsy seizure and co-existed with background structure (〈1 Hz, low frequency discharge). The phase average wave exhibited opposed phase abnormal rhythm at 3 Hz. Prior to childhood absence epilepsy seizure, EEG detected opposed abnormal a rhythm and 3 Hz composition, which were not detected with traditional EEG. Compared to EEG signals from normal children, epileptic discharges from clinical and subclinical childhood absence epilepsy seizures were positive and amplitude was significantly greater (P〈0.05).CONCLUSION: Wavelet transformation was used to analyze EEG signals from childhood absence epilepsy to obtain multi-scale quantitative characteristics and phase average waveforms. Multi-scale wavelet coefficients of EEG signals correlated with childhood absence epilepsy seizure, and multi-scale waveforms prior to epilepsy seizure were similar to characteristics during the onset period. Compared to normal children, EEG signals during epilepsy seizure exhibited an opposed phase model.展开更多
In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decompo...In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decomposition of chaotic dynamical system is essentially a projection of chaotic attractor on the axes of space opened by the wavelet filter vectors, which corresponds to the time-delayed embedding method of phase space reconstruction proposed by Packard and Takens. The experimental results show that, the structure of dynamical trajectory of chaotic system on the wavelet space is much similar to the original system, and the nonlinear invariants such as correlation dimension, Lyapunov exponent and Kolmogorov entropy are still reserved. It demonstrates that wavelet decomposition is effective for characterizing chaotic dynamical system.展开更多
H(ω) |is chosen as a filter for filter H(ω) ,and |H(ω)| is a even function when H(ω) is a real coefficient rational function of e -iω ,and so the scaling and wavelet functions corresponding to | H...H(ω) |is chosen as a filter for filter H(ω) ,and |H(ω)| is a even function when H(ω) is a real coefficient rational function of e -iω ,and so the scaling and wavelet functions corresponding to | H(ω) | possess linear phases. An algorithm is given for computation of wavelet at very low cost.展开更多
An attempt has been made to apply the wavelet methodology for the study of the results of the chaotic behavior of multiparticle production in relativistic heavy ion collisions. We reviewed the data that describes the ...An attempt has been made to apply the wavelet methodology for the study of the results of the chaotic behavior of multiparticle production in relativistic heavy ion collisions. We reviewed the data that describes the collisions of relativistic heavy ion for the case η-space in 1-D phase space of variable. We compared the experimental data and UrQMD data using wavelet coherency. We discussed the results of the comparison.展开更多
The arrival times of first teleseismic phases are difficult to be measured precisely because of slowly and gradually changed onsets and weak amplitudes. The arrival times measured manually are usually behind the real ...The arrival times of first teleseismic phases are difficult to be measured precisely because of slowly and gradually changed onsets and weak amplitudes. The arrival times measured manually are usually behind the real ones. In this paper, using the ratio method of fixed scale wavelet transformations improved by us, the arrival times for the first arrival phases (such as P and PKIKP) at the teleseismic and far-teleseismic distances were measured. The results are reasonable and reliable based on the analysis and discussion of the reliabilities and errors.展开更多
The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavele...The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavelet transform coefficients of the raw seismic data. The algorithm detects phases, determines arrival times and indicates the seismic event direction from three component seismic data that represents the ground displacement in three orthogonal directions. The essential concept is that strong features of the seismic signal are present in the wavelet coefficients across several scales of time and direction. The P-phase is detected by generating a function using polarization information while S-phase is detected by generating a function based on the transverse to radial amplitude ratio. These functions are shown to be very effective metrics in detecting P and S-phases and for determining their arrival times for low signal-to-noise arrivals. Results are compared with arrival times obtained by a human analyst as well as with a standard STA/LTA algorithm from local and regional earthquakes and found to be consistent.展开更多
We applied the wavelet methodology for our earlier published research work of the chaotic behavior so called multiplicity fluctuations of secondary charged particles produced during the nucleus-nucleus (A-A) collision...We applied the wavelet methodology for our earlier published research work of the chaotic behavior so called multiplicity fluctuations of secondary charged particles produced during the nucleus-nucleus (A-A) collisions at an energy of the order of ≈ 409 GeV in a new fashion. We illustrated the wavelet coherency in a relation of chaotic behavior for above said data of secondary charged pions in different phase spaces of collisions such as: η-space, φ-space (in one dimension) and ηφ-space (in two dimensions) respectively. We have shown the changes in the wavelet coherence when there are different values of two parameters “q” and “p”. We discussed our new results for the comparison purpose and findings were in the good agreements.展开更多
A phase-domain blind estimator of symbol duration based on Haar wavelet transform(HWT) is proposed.It can estimate the symbol duration of phase modulated signals,such as M-ary phase-shift keying(MPSK) signals and ...A phase-domain blind estimator of symbol duration based on Haar wavelet transform(HWT) is proposed.It can estimate the symbol duration of phase modulated signals,such as M-ary phase-shift keying(MPSK) signals and polyphase coded signals.The closed form of the spectrum of HWT is derived.Theoretical analysis shows the frequency of the first spectral peak is equal to the symbol rate,which is the reciprocal of symbol duration.Thus the symbol duration can be extracted from the spectrum.Subsequently,the optimum wavelet scale is determined according to the maximum output signal to noise ratio(OSNR) criterion.MAT-LAB simulations show that this algorithm can blindly estimate the symbol duration without any prior knowledge.This estimator need not estimate the carrier frequency and has the characteristics of low computation complexity and high accuracy.展开更多
基金supported by the Major Basic Research Development Program of China (973 Project No. 2007CB209608)
文摘Phase spectrum estimation of the seismic wavelet is an important issue in high-resolution seismic data processing and interpretation. On the basis of two patterns of constant-phase rotation and root transform for wavelet phase spectrum variation, we introduce six sparse criteria, including Lu’s improved kurtosis criterion, the parsimony criterion, exponential transform criterion, Sech criterion, Cauchy criterion, and the modified Cauchy criterion, to phase spectrum estimation of the seismic wavelet, obtaining an equivalent effect to the kurtosis criterion. Through numerical experiments, we find that when the reflectivity is not a sparse sequence, the estimated phase spectrum of the seismic wavelet based on the criterion function will deviate from the true value. In order to eliminate the influence of non-sparse reflectivity series in a single trace, we apply the method to the multi-trace seismogram, improving the accuracy of seismic wavelet phase spectrum estimation.
基金funded by Na-tional Natural Science Foundation of China (No.40774039)
文摘In this paper, we present wavelet transformation method to measure interstation phase velocity. We use Morlet wavelet function as mother wavelet to filter two seismograms at various period of interest, and correlate the wavelet filtered seismograms to form cross-correlogram. If both wavelet filtered signals are in phase at that period, the phase of the cross-correlogram is a minimum. Using 3-spline interpolation to transform cross-correlation matrix to a phase velocity verse period image, it is convenient for us to measure interstation phase velocity.
文摘This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data.
基金funded by National Natural Science Foundation of China (Grant No. 41375038)China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201306040,GYHY201306075)
文摘Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting from the multiscale analysis,various types of noises can be identified according to their characteristics in different scales,and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied,a default threshold strategy through which the threshold value is determined by the noise intensity,or a ΦDP penalty threshold strategy through which a special value is designed for ΦDP de-noising.Then,a hard-or soft-threshold function,depending on the de-noising purpose,is selected to reconstruct the signal.Combining the three noise suppression strategies and the two signal reconstruction functions,and without loss of generality,two schemes are presented to verify the de-noising effect by dbN wavelets:(1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ΦDP penalty threshold strategy with the soft threshold function scheme (PPSS).Furthermore,the wavelet de-noising is compared with the mean,median,Kalman,and finite impulse response (FIR) methods with simulation data and two actual cases.The results suggest that both of the two schemes perform well,especially when ΦDP data are simultaneously polluted by various scales and types of noises.A slight difference is that the PSS method can retain more detail,and the PPSS can smooth the signal more successfully.
基金the National Natural Science Foundation of China,No. 60703045
文摘BACKGROUND: Recent studies have focused on various methods of wavelet transformation for electroencephalogram (EEG) signals. However, there are very few studies reporting characteristics of multi-scale phase waves during epileptic discharge.OBJECTIVE: To extract multi-scale phase average waveforms from childhood absence epilepsy EEG signals between time and frequency domains using wavelet transformation, and to compare EEG signals of absence seizure with pre-epileptic seizure and normal children, and to quantify multi-scale phase average waveforms from childhood absence epilepsy EEG signals. DESIGN, TIME AND SETTING: The case-comparative experiment was performed at the Department of Neuroelectrophysiology, Tianjin Medical University from August 2002 to May 2005. PARTICIPANTS: A total of 15 patients with childhood absence epilepsy from the General Hospital of Tianjin Medical University were enrolled in the study. The patients were not administered anti-epileptic drugs or sedatives prior to EEG testing. In addition, 12 healthy, age- and gender-matched children were also enrolled.METHODS: EEG signals were tested on 15 patients with childhood absence epilepsy and 12 normal children. Epileptic discharge signals during clinical and subclinical seizures were collected 10 and 20 times, respectively. The collected EEG signals were treated with wavelet transformation to extract multi-scale characteristics during absence epilepsy seizure using a conditional sampling method. Multi-scale phase average waveforms were collected using a conditional phase averaging technique. Amplitude of phase average waveform from EEG signals of epilepsy seizure, subclinical epileptic discharge, and EEG signals of normal children were compared and statistically analyzed in the first half-cycle.MAIN OUTCOME MEASURES: Multi-scale wavelet coefficient and the evolution of EEG signals were observed during childhood absence epilepsy seizures using wavelet transformation. Multi-scale phase average waveforms from EEG signals were observed using a conditional sampling method and phase averaging technique.RESULTS: Multi-scale characteristics of EEG signals demonstrated that 12-scale (3 Hz) rhythmical activity was significantly enhanced during childhood absence epilepsy seizure and co-existed with background structure (〈1 Hz, low frequency discharge). The phase average wave exhibited opposed phase abnormal rhythm at 3 Hz. Prior to childhood absence epilepsy seizure, EEG detected opposed abnormal a rhythm and 3 Hz composition, which were not detected with traditional EEG. Compared to EEG signals from normal children, epileptic discharges from clinical and subclinical childhood absence epilepsy seizures were positive and amplitude was significantly greater (P〈0.05).CONCLUSION: Wavelet transformation was used to analyze EEG signals from childhood absence epilepsy to obtain multi-scale quantitative characteristics and phase average waveforms. Multi-scale wavelet coefficients of EEG signals correlated with childhood absence epilepsy seizure, and multi-scale waveforms prior to epilepsy seizure were similar to characteristics during the onset period. Compared to normal children, EEG signals during epilepsy seizure exhibited an opposed phase model.
基金supported by the Natural Science Foundation of Fujian Province of China (Grant Nos. 2010J01210 and T0750008)
文摘In view of the disadvantages of the traditional phase space reconstruction method, this paper presents the method of phase space reconstruction based on the wavelet decomposition and indicates that the wavelet decomposition of chaotic dynamical system is essentially a projection of chaotic attractor on the axes of space opened by the wavelet filter vectors, which corresponds to the time-delayed embedding method of phase space reconstruction proposed by Packard and Takens. The experimental results show that, the structure of dynamical trajectory of chaotic system on the wavelet space is much similar to the original system, and the nonlinear invariants such as correlation dimension, Lyapunov exponent and Kolmogorov entropy are still reserved. It demonstrates that wavelet decomposition is effective for characterizing chaotic dynamical system.
文摘H(ω) |is chosen as a filter for filter H(ω) ,and |H(ω)| is a even function when H(ω) is a real coefficient rational function of e -iω ,and so the scaling and wavelet functions corresponding to | H(ω) | possess linear phases. An algorithm is given for computation of wavelet at very low cost.
文摘An attempt has been made to apply the wavelet methodology for the study of the results of the chaotic behavior of multiparticle production in relativistic heavy ion collisions. We reviewed the data that describes the collisions of relativistic heavy ion for the case η-space in 1-D phase space of variable. We compared the experimental data and UrQMD data using wavelet coherency. We discussed the results of the comparison.
基金National Natural Science Foundation of China (40074007).
文摘The arrival times of first teleseismic phases are difficult to be measured precisely because of slowly and gradually changed onsets and weak amplitudes. The arrival times measured manually are usually behind the real ones. In this paper, using the ratio method of fixed scale wavelet transformations improved by us, the arrival times for the first arrival phases (such as P and PKIKP) at the teleseismic and far-teleseismic distances were measured. The results are reasonable and reliable based on the analysis and discussion of the reliabilities and errors.
文摘The discrete time wavelet transform has been used to develop software that detects seismic P and S-phases. The detection algorithm is based on the enhanced amplitude and polarization information provided by the wavelet transform coefficients of the raw seismic data. The algorithm detects phases, determines arrival times and indicates the seismic event direction from three component seismic data that represents the ground displacement in three orthogonal directions. The essential concept is that strong features of the seismic signal are present in the wavelet coefficients across several scales of time and direction. The P-phase is detected by generating a function using polarization information while S-phase is detected by generating a function based on the transverse to radial amplitude ratio. These functions are shown to be very effective metrics in detecting P and S-phases and for determining their arrival times for low signal-to-noise arrivals. Results are compared with arrival times obtained by a human analyst as well as with a standard STA/LTA algorithm from local and regional earthquakes and found to be consistent.
文摘We applied the wavelet methodology for our earlier published research work of the chaotic behavior so called multiplicity fluctuations of secondary charged particles produced during the nucleus-nucleus (A-A) collisions at an energy of the order of ≈ 409 GeV in a new fashion. We illustrated the wavelet coherency in a relation of chaotic behavior for above said data of secondary charged pions in different phase spaces of collisions such as: η-space, φ-space (in one dimension) and ηφ-space (in two dimensions) respectively. We have shown the changes in the wavelet coherence when there are different values of two parameters “q” and “p”. We discussed our new results for the comparison purpose and findings were in the good agreements.
基金supported by the Postdoctoral Science Foundation of China (20080441050)
文摘A phase-domain blind estimator of symbol duration based on Haar wavelet transform(HWT) is proposed.It can estimate the symbol duration of phase modulated signals,such as M-ary phase-shift keying(MPSK) signals and polyphase coded signals.The closed form of the spectrum of HWT is derived.Theoretical analysis shows the frequency of the first spectral peak is equal to the symbol rate,which is the reciprocal of symbol duration.Thus the symbol duration can be extracted from the spectrum.Subsequently,the optimum wavelet scale is determined according to the maximum output signal to noise ratio(OSNR) criterion.MAT-LAB simulations show that this algorithm can blindly estimate the symbol duration without any prior knowledge.This estimator need not estimate the carrier frequency and has the characteristics of low computation complexity and high accuracy.
文摘长波地波传播时延是决定陆基导航定位系统精度的关键,时域有限差分(Finite Difference-Time Domain,FDTD)方法可以提高其精度。但是FDTD方法在计算长距离的模型问题时迭代次数随之增多导致数值计算误差变大。主要通过基于圆柱坐标系下采用具有紧支撑特性的二阶矩Daubechies小波函数为尺度函数的时域多分辨分析(Multiresolution Time Domain,MRTD)方法来提高数值计算精度。随后对MRTD方法进行色散分析,最后将该方法应用于低频地波的传播预测中,提取观测点的衰减因子相位,与使用FDTD数值算法得到的结果进行对比,结果表明:MRTD方法可以在保持精度的前提下用时比FDTD更短。