期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
基于WCFSE-FSVM的转子振动故障诊断方法 被引量:4
1
作者 费成巍 白广忱 《推进技术》 EI CAS CSCD 北大核心 2013年第9期1266-1271,共6页
为了提高含有噪声和野值的转子振动故障样本诊断精度,提出了基于WCFSE-FSVM的故障诊断方法。充分融合小波相关特征尺度熵(WCFSE)特征提取方法和FSVM故障诊断方法的优点,建立WCFSE-FSVM故障诊断模型。基于转子实验台模拟4种典型故障,获... 为了提高含有噪声和野值的转子振动故障样本诊断精度,提出了基于WCFSE-FSVM的故障诊断方法。充分融合小波相关特征尺度熵(WCFSE)特征提取方法和FSVM故障诊断方法的优点,建立WCFSE-FSVM故障诊断模型。基于转子实验台模拟4种典型故障,获得原始故障数据;并利用WCFSE方法提取这些故障数据的WCFSE值,选取故障信号高频段中的尺度1和尺度2上的小波相关特征尺度熵W1和W2构造出振动信号的故障向量作为故障样本,建立FSVM诊断模型。实例分析显示:WCFSE-FSVM方法的转子故障诊断精度最高,即故障类别诊断精度为94.49%,故障严重程度的诊断精度为95.58%,二者都优于其它故障诊断方法。验证了WCFSEFSVM方法的可行性和有效性。 展开更多
关键词 小波相关特征尺度熵 模糊支持向量机 转子振动 故障诊断
下载PDF
基于小波包分解多尺度排列熵及2阶特征选择的转辙机故障诊断方法 被引量:3
2
作者 孙永奎 曹源 +1 位作者 李鹏 李旭 《中国铁道科学》 EI CAS CSCD 北大核心 2023年第3期178-188,共11页
针对转辙机高精度故障诊断的需求,结合声音信号非接触、易采集等优势,提出一种基于声音信号的非接触式故障诊断方法。首先,基于小波包分解与多尺度排列熵,实现对声音样本的特征提取;其次,提出基于ReliefF和二进制粒子群优化算法的2阶特... 针对转辙机高精度故障诊断的需求,结合声音信号非接触、易采集等优势,提出一种基于声音信号的非接触式故障诊断方法。首先,基于小波包分解与多尺度排列熵,实现对声音样本的特征提取;其次,提出基于ReliefF和二进制粒子群优化算法的2阶特征选择方法,得到最佳特征集合,实现对声音样本的特征选择;最后,基于支持向量机算法对最佳特征集进行训练和测试,完成对转辙机的故障诊断。依托10种常见工况下共计800组声音样本开展实验,结果表明:该方法在反位—定位和定位—反位转换过程中得到的特征点数分别为13和39个,故障诊断准确率分别为99.67%和100%;相比于单一特征选择方法,采用的2阶特征选择方法能够大大降低特征维度,提高故障诊断准确率;相比于k近邻和线性判别分析这2种分类器,支持向量机分类器在转辙机故障诊断中更具优势。 展开更多
关键词 转辙机 故障诊断 小波包分解 多尺度排列熵 2阶特征选择 支持向量机
下载PDF
小波相关特征尺度熵在滚动轴承故障诊断中的应用 被引量:15
3
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《国防科技大学学报》 EI CAS CSCD 北大核心 2007年第6期102-105,111,共5页
将小波相关滤波方法与Shannon信息熵相结合,提出了一种故障检测与诊断的方法——小波相关特征尺度熵故障法。首先利用小波相关滤波方法提取滚动轴承故障振动信号的微弱故障信息特征,以求得信噪比较高的尺度域小波系数;然后结合Shannon... 将小波相关滤波方法与Shannon信息熵相结合,提出了一种故障检测与诊断的方法——小波相关特征尺度熵故障法。首先利用小波相关滤波方法提取滚动轴承故障振动信号的微弱故障信息特征,以求得信噪比较高的尺度域小波系数;然后结合Shannon信息熵理论给出了沿尺度分布的小波相关特征尺度熵定义及其计算方法。小波相关特征尺度熵能够定量表征不同尺度的能量分布,各尺度能量分布的均匀性可以反映滚动轴承的运行状态的差别,选取最能反映故障特征的小波相关特征尺度熵作为特征参数,通过所选取的小波相关特征尺度熵大小判断滚动轴承的工作状态和故障类型。实验证明该方法能有效地判断滚动轴承故障特征,为滚动轴承故障诊断提供了新的思路。 展开更多
关键词 小波相关滤波 小波相关特征尺度熵 滚动轴承 Shannon熵
下载PDF
基于小波相关特征尺度熵的预测特征信息提取方法研究 被引量:15
4
作者 曾庆虎 刘冠军 邱静 《中国机械工程》 EI CAS CSCD 北大核心 2008年第10期1193-1196,共4页
提出一种小波相关特征尺度熵WCFSE的预测特征信息提取方法。将小波相关滤波法与Shannon信息熵理论相结合,给出了沿尺度分布的WCFSE的定义及其计算方法。WCFSE定量表征不同尺度的能量分布,各尺度能量分布的均匀性反映设备运行状态的差别... 提出一种小波相关特征尺度熵WCFSE的预测特征信息提取方法。将小波相关滤波法与Shannon信息熵理论相结合,给出了沿尺度分布的WCFSE的定义及其计算方法。WCFSE定量表征不同尺度的能量分布,各尺度能量分布的均匀性反映设备运行状态的差别,选取最能反映故障特征的WCFSE作为特征参数来判断设备运行状态。正常和几种故障程度不同的滚动体运行状态的识别结果验证了该方法的有效性和实用性。 展开更多
关键词 小波相关特征尺度熵 小波相关滤波 特征提取 Shannon熵 预测特征信息
下载PDF
基于KPCA-HSMM设备退化状态识别与故障预测方法研究 被引量:28
5
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第7期1341-1346,共6页
为消除多通道观测信息冗余,压缩高维故障特征,提出基于KPCA多通道特征信息融合的HSMM设备退化状态识别与故障预测新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量,然后,利用KPCA... 为消除多通道观测信息冗余,压缩高维故障特征,提出基于KPCA多通道特征信息融合的HSMM设备退化状态识别与故障预测新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量,然后,利用KPCA方法对多通道的小波相关特征尺度熵向量进行冗余消除和特征融合,得到多通道的融合小波相关特征尺度熵向量,并以此向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器与故障预测模型,从而实现设备退化状态识别与故障预测。将其应用到滚动轴承的退化状态识别与故障预测中,验证了该方法的有效性。 展开更多
关键词 故障预测 状态识别 小波相关特征尺度熵 信息融合 KPCA 隐半马尔可夫模型(HSMM)
下载PDF
用谐波小波包变换法提取GIS局部放电信号多尺度特征参数 被引量:21
6
作者 唐炬 樊雷 +1 位作者 张晓星 刘欣 《电工技术学报》 EI CSCD 北大核心 2015年第3期250-257,共8页
超高频(UHF)法在GIS局部放电(PD)检测中已得到了广泛应用,UHF PD信号的特征提取对准确识别GIS内部绝缘缺陷类型和指导检修工作具有重要意义,但目前仍然缺乏有效的特征提取方法。为此,本文利用谐波小波具有严格盒形频谱的优点,提出一种提... 超高频(UHF)法在GIS局部放电(PD)检测中已得到了广泛应用,UHF PD信号的特征提取对准确识别GIS内部绝缘缺陷类型和指导检修工作具有重要意义,但目前仍然缺乏有效的特征提取方法。为此,本文利用谐波小波具有严格盒形频谱的优点,提出一种提取UHF PD特征信息的谐波小波包变换(HWPT)方法,对实验室获取的4种典型放电模型产生的UHF PD信号,采用HWPT进行多尺度分解,以克服实小波包分解子带间存在频谱混叠和能量泄漏的缺陷,利用UHF PD信号在不同尺度能量和复杂度的差异,提取多尺度能量和多尺度样本熵参数作为模式识别的特征量,更加精确地描述了UHF PD信号的时频域信息。最后利用支持向量机分类识别的结果表明,该方法可以取得比实小波包更好的识别效果,多尺度能量和多尺度样本熵特征参数均能有效识别4种绝缘缺陷。 展开更多
关键词 谐波小波包 特征提取 局部放电 频谱混叠 多尺度能量 多尺度样本熵
下载PDF
基于Morlet小波变换的滚动轴承早期故障特征提取研究 被引量:72
7
作者 马伦 康建设 +1 位作者 孟妍 吕雷 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第4期920-926,共7页
针对轴承故障初期振动信号中的特征成分极易被噪声信号淹没而不能及时检测的问题,结合Morlet小波变换降噪的基本原理,提出一种由尺度相关能量分布确定最优尺度参数的方法,从而在该尺度下对信号滤波来提取冲击特征成分。以最小Shannon熵... 针对轴承故障初期振动信号中的特征成分极易被噪声信号淹没而不能及时检测的问题,结合Morlet小波变换降噪的基本原理,提出一种由尺度相关能量分布确定最优尺度参数的方法,从而在该尺度下对信号滤波来提取冲击特征成分。以最小Shannon熵优化Morlet小波的形状参数,实现母小波与信号故障特征的最佳匹配;以最优Morlet小波在不同变换尺度下的小波系数绘制尺度-能量谱,利用信号故障特征能量在特定尺度范围内聚集的特性,从谱图的极值点中选择滤波效果最好的尺度参数。对轴承全寿命数据的实际应用结果表明,与信号的均方根趋势相比,该方法能够提前从信号中提取微弱故障特征并检测到轴承的外圈故障,为轴承早期故障诊断提供了一种有效途径。 展开更多
关键词 Morlet小波变换 滚动轴承 早期故障特征提取 Shannon熵 尺度-能量谱
下载PDF
小波相关特征尺度熵和隐半马尔可夫模型在设备退化状态识别中的应用 被引量:12
8
作者 曾庆虎 邱静 刘冠军 《机械工程学报》 EI CAS CSCD 北大核心 2008年第11期236-241,247,共7页
为正确识别机械设备当前所处的退化状态,预防设备进一步退化和故障的发生,提出一种基于小波相关特征尺度熵和隐半马尔可夫模型(Hidden semi-Markov models,HSMM)的设备退化状态识别新方法。对采集到的设备振动信号进行小波相关滤波处理... 为正确识别机械设备当前所处的退化状态,预防设备进一步退化和故障的发生,提出一种基于小波相关特征尺度熵和隐半马尔可夫模型(Hidden semi-Markov models,HSMM)的设备退化状态识别新方法。对采集到的设备振动信号进行小波相关滤波处理,得到信噪比较高的尺度域小波系数,在此基础上结合信息熵理论提出了沿尺度分布的小波相关特征尺度熵概念。构造信号的小波相关特征尺度熵/矢量,并以此矢量作为HSMM的输入进行训练,建立基于HSMM的机械设备运行状态分类器,从而实现设备退化状态的识别。以滚动轴承为例,对正常和几种故障程度不同的滚动体运行状态进行了识别,同时还与基于小波相关特征尺度熵-HMM的状态识别法进行了比较,试验结果表明该方法能有效识别设备的退化状态。 展开更多
关键词 小波相关特征尺度熵 隐半马尔可夫模型(HSMM) 状态识别 退化状态
下载PDF
基于小波相关特征尺度熵的HSMM设备退化状态识别与故障预测方法 被引量:16
9
作者 曾庆虎 邱静 刘冠军 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第12期2559-2564,共6页
隐半马尔可夫模型(HSMM)是隐马尔可夫模型(HMM)的一种扩展模型,是在已定义的HMM结构上加入了时间组成部分,克服了因马尔可夫链的假设造成HMM建模所具有的局限性,与HMM相比具有更好的建模能力和分析能力,而且可以直接用于预测。基于振动... 隐半马尔可夫模型(HSMM)是隐马尔可夫模型(HMM)的一种扩展模型,是在已定义的HMM结构上加入了时间组成部分,克服了因马尔可夫链的假设造成HMM建模所具有的局限性,与HMM相比具有更好的建模能力和分析能力,而且可以直接用于预测。基于振动信号与语音信号的相似性,将HSMM引入机械设备退化状态识别与故障预测中,提出基于小波相关特征尺度熵(WCFSE)的HSMM设备退化状态识别与故障预测方法。首先将小波相关滤波法与信息熵理论相结合得到能敏感表征故障严重程度的WCFSE向量,并以此向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器与故障预测模型,从而实现设备退化状态识别与故障预测。将其应用到滚动轴承的退化状态识别与故障预测中,验证了该方法的有效性。 展开更多
关键词 故障预测 状态识别 小波相关特征尺度熵 隐半马尔可夫模型(HSMM) 退化状态
下载PDF
EWT多尺度排列熵与GG聚类的轴承故障辨识方法 被引量:19
10
作者 赵荣珍 李霁蒲 邓林峰 《振动.测试与诊断》 EI CSCD 北大核心 2019年第2期416-423,451,共9页
针对滚动轴承故障信号具有非线性、非平稳性特点导致的故障类别难以辨识问题,提出一种基于经验小波变换、多尺度排列熵、GG(Gath-Geva,简称GG)聚类算法相结合的故障诊断方法。首先,采用经验小波变换对滚动轴承的原始信号进行分解、得到... 针对滚动轴承故障信号具有非线性、非平稳性特点导致的故障类别难以辨识问题,提出一种基于经验小波变换、多尺度排列熵、GG(Gath-Geva,简称GG)聚类算法相结合的故障诊断方法。首先,采用经验小波变换对滚动轴承的原始信号进行分解、得到若干个固有模态分量,初步提取滚动轴承的状态特征值;其次,通过相关性分析选择最优模态分量,并在多个尺度下计算其排列熵值;最后,运用主成分分析对高维熵值特征向量进行可视化降维、并输入到GG聚类算法中,实现对滚动轴承的故障辨识。与其他模式组合方法进行比较的结果表明,本研究提出的故障辨识方法具有聚类结果的类内紧致性更好的优点。 展开更多
关键词 经验小波变换 多尺度排列熵 相关性分析 GG聚类
下载PDF
基于小波特征尺度熵-隐半马尔可夫模型的设备退化状态识别方法及应用 被引量:7
11
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《兵工学报》 EI CAS CSCD 北大核心 2008年第2期198-203,共6页
机械设备从正常到故障往往经历一系列退化状态,正确识别设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。提出了一种基于小波特征尺度熵-隐半马尔可夫模型(HSMM)的设备退化状态识别新方法。通过小波变换提取小... 机械设备从正常到故障往往经历一系列退化状态,正确识别设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。提出了一种基于小波特征尺度熵-隐半马尔可夫模型(HSMM)的设备退化状态识别新方法。通过小波变换提取小波特征尺度熵,然后构造信号的小波特征尺度熵向量,并以此作为HSMM的输入进行训练,建立基于HSMM的机械设备运行状态分类器,从而实现设备退化状态的识别。并且以滚动轴承为例,对正常和几种故障程度不同的滚动体运行状态进行了识别,实验结果表明该方法能有效的识别设备的退化状态。 展开更多
关键词 信息处理技术 小波特征尺度熵 隐半马尔可夫模型(HSMM) 状态识别 退化状态
下载PDF
基于非广延小波特征尺度熵和支持向量机的轴承状态识别 被引量:10
12
作者 董绍江 汤宝平 张焱 《振动与冲击》 EI CSCD 北大核心 2012年第15期50-54,共5页
为了对轴承的运行状态进行有效的识别,以便进一步评估和预测轴承的寿命,提出了基于非广延小波特征尺度熵和Morlet小波核支持向量机(Morlet Wavelet Kernel Support Vector Machine,MWSVM)的轴承运行状态识别的新方法。对采集到的轴承振... 为了对轴承的运行状态进行有效的识别,以便进一步评估和预测轴承的寿命,提出了基于非广延小波特征尺度熵和Morlet小波核支持向量机(Morlet Wavelet Kernel Support Vector Machine,MWSVM)的轴承运行状态识别的新方法。对采集到的轴承振动信号进行小波分解,得到相应的小波分解系数,在此基础上结合非广延熵理论提出了沿尺度分布的非广延小波尺度熵特征提取方法。但是通过小波特征尺度熵分析后获得的特征信息存在维数较高,特征信息间冗余严重的问题,因此,引入了流形学维数约简算法(Locality Preserving Projection,LPP)进行敏感特征信息的提取,减少在特征信息提取过程中人为因素的干扰。以约简后的特征信息作为MWSVM的输入进行训练,建立轴承的状态识别模型,从而实现轴承状态的识别。通过对某轴承内圈正常状态和几种故障程度不同的状态进行识别,试验结果表明了方法的有效性。 展开更多
关键词 非广延小波特征尺度熵 流形学算法 Morlet小波核支持向量机 状态识别
下载PDF
改进EWT_MPE模型在矿山微震信号特征提取中的应用 被引量:4
13
作者 程铁栋 易其文 +4 位作者 吴义文 戴聪聪 蔡改贫 杨丽荣 尹宝勇 《振动与冲击》 EI CSCD 北大核心 2021年第9期92-101,共10页
针对矿山微震与爆破振动信号难以自动辨识的问题,提出了一种基于改进EWTMPE(经验小波变换多尺度排列熵)的信号特征提取方法,并应用于矿山微震信号特征提取中。针对EWT在以往处理复杂信号频谱出现的过切分问题提出了新的改进方法,并采用... 针对矿山微震与爆破振动信号难以自动辨识的问题,提出了一种基于改进EWTMPE(经验小波变换多尺度排列熵)的信号特征提取方法,并应用于矿山微震信号特征提取中。针对EWT在以往处理复杂信号频谱出现的过切分问题提出了新的改进方法,并采用仿真信号验证了改进算法的可行性和准确性。将实际采集到的微震与爆破信号进行改进EWT分解,借助相关性分析从分解得到的本征模态函数(intrinsic mode function,IMF)分量中筛选出最优分量IMF1~IMF5。进而将筛选到的IMF分量进行重构,并计算重构信号的MPE值。应用GK模糊聚类算法对微震与爆破振动信号进行分类识别。结果表明,微震信号的MPE值要小于爆破信号的MPE值,且当嵌入维数m=5,尺度因子s=12,延迟时间τ=1时,两种信号的MPE值差异最大。基于改进EWT_MPE_GK模糊聚类算法的分类识别准确率达到93.5%,平均模糊熵(E)更接近0、分类系数(C)更接近1,与传统EWT_MPE_GK模糊聚类和EMD_MPE_GK模糊聚类相比,其聚类效果更优、识别准确率分别提高了3%和5.5%。 展开更多
关键词 经验小波变换 多尺度排列熵 Gustafson-kessel(GK)模糊聚类 特征提取 分类识别
下载PDF
雷达辐射源信号小波变换特征提取方法 被引量:3
14
作者 陈韬伟 朱明 陈振兴 《计算机工程与应用》 CSCD 北大核心 2010年第6期245-248,共4页
在小波域滤波算法的基础上提出一种对雷达辐射源信号进行脉内特征提取方法,该方法能够从信号中有效地提取定量信息。将小波变换后低频逼近小波系数的能量分布熵与经过尺度相关去噪计算后反映信号边缘的高频细节小波系数能量分布熵构成... 在小波域滤波算法的基础上提出一种对雷达辐射源信号进行脉内特征提取方法,该方法能够从信号中有效地提取定量信息。将小波变换后低频逼近小波系数的能量分布熵与经过尺度相关去噪计算后反映信号边缘的高频细节小波系数能量分布熵构成雷达辐射源信号的二维特征向量。通过对10种雷达辐射源信号的特征提取和分类仿真实验分析表明:提取的样本特征在0dB下具有很好的抗噪性和可聚类性,方法是有效的。该方法能够简化分类器的设计,有利于工程应用。 展开更多
关键词 雷达辐射源信号 小波变换 尺度间相关性去噪 特征提取
下载PDF
基于EWT-OPRCMDE-ELM的风电机组齿轮箱故障诊断研究 被引量:5
15
作者 李辉 李宣 +2 位作者 贾嵘 罗兴琦 白亮 《自动化仪表》 CAS 2021年第11期12-19,共8页
针对复杂运行工况和强背景噪声下风电机组齿轮箱故障特征提取和故障模式识别困难的问题。提出一种经验小波变换(EWT)、最优参数精细复合多尺度散布熵(OPRCMDE)和极限学习机(ELM)相结合的故障诊断方法。首先,利用经验小波变换将原始振动... 针对复杂运行工况和强背景噪声下风电机组齿轮箱故障特征提取和故障模式识别困难的问题。提出一种经验小波变换(EWT)、最优参数精细复合多尺度散布熵(OPRCMDE)和极限学习机(ELM)相结合的故障诊断方法。首先,利用经验小波变换将原始振动信号分解为若干子模态分量(EWF),通过相关系数选取EWF进行信号重构。其次,提取重构信号的最优参数精细复合多尺度散布熵构成故障特征向量,并通过Relief-F算法对特征向量作进一步筛选,剔除冗余。最后,利用极限学习机进行故障诊断。试验分析结果表明,所提方法能够有效提取区分度明显的风电机组齿轮箱故障特征,实现了齿轮箱故障的准确识别。该研究为风电机组齿轮箱故障诊断研究提供了参考,同时具有一定的实际工程应用价值。 展开更多
关键词 风电机组齿轮箱 经验小波变换 信号重构 特征提取 最优参数精细复合多尺度散布熵 Relief-F 极限学习机 故障诊断
下载PDF
基于特征子模式典型相关分析的热释电红外信号识别 被引量:1
16
作者 龚卫国 王林泓 贺莉芳 《光学精密工程》 EI CAS CSCD 北大核心 2011年第4期884-891,共8页
为使现有热释电红外(PIR)探测器具有识别检测区域内红外辐射源的功能,提出一种基于典型相关分析(CCA)特征融合的人体和非人体PIR信号识别方法。该方法首先提取PIR信号的频谱和小波包熵特征,然后对频谱进行子模式划分,并分别与小波包熵... 为使现有热释电红外(PIR)探测器具有识别检测区域内红外辐射源的功能,提出一种基于典型相关分析(CCA)特征融合的人体和非人体PIR信号识别方法。该方法首先提取PIR信号的频谱和小波包熵特征,然后对频谱进行子模式划分,并分别与小波包熵特征进行CCA融合,把融合后的结果作为判别信息,从而实现了特征融合且消除了特征之间的信息冗余。最后通过多数投票方式融合判别结果。作为子模式CCA特征融合的一种特殊情况,文中分析了特征与自身子模式特征CCA融合的分类性能。实验结果表明,当频谱分为5个子模式时,能有效地对人体和非人体红外辐射源进行识别,识别率可达95.2%,比直接采用频谱与小波包熵CCA融合的识别率提高了2.7%。而采用小波包熵与自身子模式特征CCA融合的识别率最高为90.7%,比单独采用小波包熵的识别率提高了2.3%。 展开更多
关键词 热释电红外(PIR)探测器 小波包熵 子模式典型相关分析(CCA) 特征融合
下载PDF
基于自适应谐波小波和能量熵的转子系统故障诊断研究 被引量:3
17
作者 邓飞跃 《中国测试》 CAS 北大核心 2016年第8期103-107,共5页
针对转子系统非平稳振动时故障特征难以准确提取的问题,提出一种基于自适应谐波小波和能量熵的转子系统故障诊断方法。首先,采用连续谐波小波方法分解转子信号,克服"二进制"谐波小波包分解不能任意选取感兴趣频段的缺限,同时... 针对转子系统非平稳振动时故障特征难以准确提取的问题,提出一种基于自适应谐波小波和能量熵的转子系统故障诊断方法。首先,采用连续谐波小波方法分解转子信号,克服"二进制"谐波小波包分解不能任意选取感兴趣频段的缺限,同时在分解过程中通过时间尺度变换的方式消除信号采集过程中不同转速及采样频率的影响;然后,通过设定合理的分解参数,提取出表征转子系统的故障特征信息并构建故障模式矩阵,得到转子系统早期局部碰摩、全周碰摩、油膜涡动和油膜振荡等4种工况下的能量熵值;最后,将特征向量输入支持向量机(support vector machine,SVM)判断出转子系统的故障类型。试验结果表明:该方法可以有效用于转子系统的故障诊断。 展开更多
关键词 转子 谐波小波 故障特征 时间尺度变换 能量熵
下载PDF
基于精细复合多尺度熵特征向量相关系数在滚动轴承故障诊断中应用 被引量:10
18
作者 叶金义 谢小平 +1 位作者 梁烊炀 张福运 《噪声与振动控制》 CSCD 2018年第5期186-191,共6页
复合多尺度熵(CMSE)是在多尺度熵(MSE)基础上提出来的,它改善了MSE存在的熵值不精确、波动较大等,但不能解决样本时间序列太短引起未定义熵问题。精细复合多尺度熵(Refined Composite Multi-scale Entropy,RCMSE)通过改进算法使熵估计... 复合多尺度熵(CMSE)是在多尺度熵(MSE)基础上提出来的,它改善了MSE存在的熵值不精确、波动较大等,但不能解决样本时间序列太短引起未定义熵问题。精细复合多尺度熵(Refined Composite Multi-scale Entropy,RCMSE)通过改进算法使熵估计的准确性得到提高,并能降低诱导未定义熵的概率。以此为基础,提出基于RCMSE特征向量关系数的轴承故障识别分类方法。该方法首先利用RCMSE对数据样本生成多尺度熵,计算测试样本与已知故障状态的训练样本的RCMSE相关系数,从而判断测试样本的状态类型。对轴承信号数据进行试验表明,该方法能100%准确的对轴承正常,内圈,外圈和滚动体故障信号识别分类。因此,该方法是一种有效的识别故障特征,可为实际轴承故障诊断提供参考。 展开更多
关键词 振动与波 精细复合多尺度熵 故障诊断 相关系数 特征提取
下载PDF
基于关键熵的双树复小波域盲图像水印算法 被引量:7
19
作者 刘金华 佘堃 《光电子.激光》 EI CAS CSCD 北大核心 2011年第5期757-762,共6页
设计了一种基于关键熵的盲数字图像水印算法。首先,使用尺度不变特征变换(SIFT)方法,从图像中提取特征点;其次,以特征点为中心构造局部不变圆形区域,并对其进行归一化处理;然后,选取大于图像平均熵的图像区域作为关键熵图像区域;最后,... 设计了一种基于关键熵的盲数字图像水印算法。首先,使用尺度不变特征变换(SIFT)方法,从图像中提取特征点;其次,以特征点为中心构造局部不变圆形区域,并对其进行归一化处理;然后,选取大于图像平均熵的图像区域作为关键熵图像区域;最后,结合量化调制策略及双树复小波变换(DTCWT)技术,将水印嵌入到关键熵图像区域中。实验分析表明,本文算法对常用的图像处理攻击(如加性噪声、中值滤波J、PEG压缩等)和几何攻击(如缩放、旋转、仿射变换等)均具有较好的鲁棒性。 展开更多
关键词 数字图像水印 关键熵 尺度不变特征变换(SIFT) 双树复小波变换(DTCWT)
原文传递
基于小波相关排列熵的齿轮故障特征提取
20
作者 丛华 崔超 +2 位作者 江鹏程 刘远宏 冯辅周 《装甲兵工程学院学报》 2015年第4期31-35,共5页
针对齿轮变速箱振动信号信噪比不高、特征提取困难的问题,提出了基于小波相关排列熵的故障特征提取方法。利用具有自适应功能的小波域空间滤波器,对不同工况下的齿轮信号进行了降噪处理,运用排列熵算法计算了降噪信号的排列熵变化曲线,... 针对齿轮变速箱振动信号信噪比不高、特征提取困难的问题,提出了基于小波相关排列熵的故障特征提取方法。利用具有自适应功能的小波域空间滤波器,对不同工况下的齿轮信号进行了降噪处理,运用排列熵算法计算了降噪信号的排列熵变化曲线,通过比较齿轮不同状态下的小波相关排列熵特征值来提取故障特征。在变速箱故障模拟试验台上采集了正常、磨损和断齿3种状态时的振动信号进行计算,结果表明:该方法能有效提取齿轮故障特征。 展开更多
关键词 齿轮 故障特征 小波相关 排列熵
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部