Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic ...Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.展开更多
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT...To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.展开更多
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network...Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network.展开更多
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo...One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.展开更多
Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time non...Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.展开更多
This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated...This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated. Since wavelet packet decomposition can provide more precise frequency resolution than wavelet decomposition the implementation of one dimensional wavelet packet transform and their usefulness in time signal analysis and synthesis is illustrated. A mother or basis wavelet is first chosen for five wavelet filter families such as Haar, Daubechies (Db4), Coiflet, Symlet and dmey. The signal is then decomposed to a set of scaled and translated versions of the mother wavelet also known as time and frequency parameters. Analysis and synthesis of the time signal is performed around 8 seconds to 25 seconds. This was conducted to determine the effect of the choice of mother wavelet on the time signals. Results are also prepared for the comparison of the signal at each decomposition level. The physical changes that are occurred during each decomposition level can be observed from the results. The results show that wavelet filter with WPA are useful for analysis and synthesis purpose. In terms of signal quality and the time required for the analysis and synthesis, the Haar wavelet has been seen to be the best mother wavelet. This is taken from the analysis of the signal to noise ratio (SNR) value which is around 300 dB to 315 dB for the four decomposition levels.展开更多
The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal c...The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal could be identified by wavelet packet decomposition and its energy spectrum conveniently, at the same time, quantification analysis were performed. The result demonstrates that this method is more advantageous and of practical value than traditional Fourier analysis method.展开更多
Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which ...Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy展开更多
An in vivo fluorescence discrimination technique for phytoplankton population was developed by using Wavelet packet transform, cluster analysis and non-negative least squares. The technique was used to analyze water s...An in vivo fluorescence discrimination technique for phytoplankton population was developed by using Wavelet packet transform, cluster analysis and non-negative least squares. The technique was used to analyze water samples from different sea regions. For simulative mixtures, when dominant species account for 60%, 70%, 80%, 90% at the division level, the correct discrimination ratios (CDRs) are 83.0%, 99.1%, 99.7% and 99.9% with the relative contents of 58.5%, 68.4%, 77.7% and 86.3%, respectively; when the algae dominance are 60%, 70%, 80%, 90%, 100% at the genus level, the CDRs are 86.1%, 94.9%, 95.2%, 96.8% and 96.7%, respectively. For laboratory mixtures, the CDRs are 88.1% and 78.4% at the division and genus level, respectively. For field samples, the CDRs were 91.7% and 80% at the division and genus level, respectively (mesocosm experiments), and the CDRs were 100% and 66.7% at the division and genus level, respectively (Jiaozhou Bay). The fluorometric technique was used to estimate the phytoplankton community composition and relative abundance of different classes for the April 2010 cruise in the Yellow Sea with the results agreeing with those in published papers by other authors.展开更多
The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs ...The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs of equivalent bandwidth filters with different center frequency. The corresponding WPD entropy values of coefficients increase sharply when the discrete spectrum interferences (DSIs), frequency spectrum of which is centered at several frequency points existing in some frequency region. Based on WPD, an entropy threshold method (ETM) is put forward, in which entropy is used to determine whether partial discharge (PD) signals are interfered by DSIs. Simulation and real data processing demonstrate that ETM works with good efficiency, without pre-knowing DSI information. ETM extracts the phase of PD pulses accurately and can calibrate the quantity of single type discharge.展开更多
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know...Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.展开更多
Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression w...Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead.The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models.Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods,including Gaussian process regression,extreme learning machines,artificial neural networks and support vector machines,across all seasons.The proposed model exhibits lower normalized root mean square error(nRMSE)(2.116%)and root mean square error(RMSE)(208.233 kW)values,along with a higher coefficient of determination(R^(2))of 99.881%.Furthermore,the exceptional performance of the model is maintained even when tested with various prediction horizons.However,as the forecast horizon extends from 1.5 to 5.5 hours,the prediction accuracy decreases,evident by the increase in the RMSE(710.839 kW)and nRMSE(7.276%),and a decrease in R2(98.462%).Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results.This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model,suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy,thereby contributing to more efficient grid management.展开更多
Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of a...Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.展开更多
The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response un...The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.展开更多
In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature...In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.展开更多
In order to storage resource of a radar recognition system, schemes for reducing data storage and for correlation discrimination of radar based on wavelet packets were proposed Experiment results at various signal-t...In order to storage resource of a radar recognition system, schemes for reducing data storage and for correlation discrimination of radar based on wavelet packets were proposed Experiment results at various signal-to-noise ratios were given The given.ability of the reduced data method's validity are supported by experimental results. Using optimal basis can get higher successful recognition rate using rigid wavelet basis.展开更多
On the basis of analyzing the principle of the space-time coding technique and the multi-carrier code division multiple access (MC-CDMA) technique, adopting the turbo codes as channel coding and the optimized comple...On the basis of analyzing the principle of the space-time coding technique and the multi-carrier code division multiple access (MC-CDMA) technique, adopting the turbo codes as channel coding and the optimized complex wavelet packet as multi-carrier modulation, a novel space-time block coded the MC-CDMA system based on complex wavelet packet and turbo coding is proposed, and the system bit error rate (BER) performance in the Rayleigh fading channel is investigated. The system can make full use of space-time block codes' transmit diversity and turbo codes' good ability against fading channel to improve the BER performance significantly, and it can also avoid the decrease of spectrum efficiency of conventional MC-CDMA due to inserting cyclic prefix (CP) by utilizing superior characteristics of the optimized complex wavelet packet. Simulation results show that the proposed space-time block coded MC-CDMA system based on the complex wavelet packet performs better than the conventional space-time block coded MC-CDMA (STBC-MC-CDMA) system, and slightly outperforms the STBC-MC-CDMA with CP. Moreover, the application of the space-time block coding technique concatenated with turbo codes strengthens the system ability to combat various interferences in fading channel further.展开更多
During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vib...During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.展开更多
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
基金National Key Research and Development Program of China under Grant No.2023YFE0102900National Natural Science Foundation of China under Grant Nos.52378506 and 52208164。
文摘Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.
文摘To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.
基金Project(2007CB311106) supported by National Key Basic Research Program of ChinaProject(NEUL20090101) supported by the Foundation of National Information Control Laboratory of China
文摘Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network.
基金supported by the State Key Program of National Natural Science of China (No. 11232009)the Shanghai Leading Academic Discipline Project (No. S30106)
文摘One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.
基金Project(50490272) supported by the National Natural Science Foundation of China project(2004036430) supported bythe Postdoctoral Science Foundation of China
文摘Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.
文摘This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated. Since wavelet packet decomposition can provide more precise frequency resolution than wavelet decomposition the implementation of one dimensional wavelet packet transform and their usefulness in time signal analysis and synthesis is illustrated. A mother or basis wavelet is first chosen for five wavelet filter families such as Haar, Daubechies (Db4), Coiflet, Symlet and dmey. The signal is then decomposed to a set of scaled and translated versions of the mother wavelet also known as time and frequency parameters. Analysis and synthesis of the time signal is performed around 8 seconds to 25 seconds. This was conducted to determine the effect of the choice of mother wavelet on the time signals. Results are also prepared for the comparison of the signal at each decomposition level. The physical changes that are occurred during each decomposition level can be observed from the results. The results show that wavelet filter with WPA are useful for analysis and synthesis purpose. In terms of signal quality and the time required for the analysis and synthesis, the Haar wavelet has been seen to be the best mother wavelet. This is taken from the analysis of the signal to noise ratio (SNR) value which is around 300 dB to 315 dB for the four decomposition levels.
文摘The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal could be identified by wavelet packet decomposition and its energy spectrum conveniently, at the same time, quantification analysis were performed. The result demonstrates that this method is more advantageous and of practical value than traditional Fourier analysis method.
基金supported by the National Natural Science Foundation of China(51375405)Independent Project of the State Key Laboratory of Traction Power(2016TP-10)
文摘Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy
基金supported by the National High-Tech Research and Development Program of China (863 Program) (No. 2009AA063005)the Natural Science Foundation of Shandong Province (No. ZR2009EM001)
文摘An in vivo fluorescence discrimination technique for phytoplankton population was developed by using Wavelet packet transform, cluster analysis and non-negative least squares. The technique was used to analyze water samples from different sea regions. For simulative mixtures, when dominant species account for 60%, 70%, 80%, 90% at the division level, the correct discrimination ratios (CDRs) are 83.0%, 99.1%, 99.7% and 99.9% with the relative contents of 58.5%, 68.4%, 77.7% and 86.3%, respectively; when the algae dominance are 60%, 70%, 80%, 90%, 100% at the genus level, the CDRs are 86.1%, 94.9%, 95.2%, 96.8% and 96.7%, respectively. For laboratory mixtures, the CDRs are 88.1% and 78.4% at the division and genus level, respectively. For field samples, the CDRs were 91.7% and 80% at the division and genus level, respectively (mesocosm experiments), and the CDRs were 100% and 66.7% at the division and genus level, respectively (Jiaozhou Bay). The fluorometric technique was used to estimate the phytoplankton community composition and relative abundance of different classes for the April 2010 cruise in the Yellow Sea with the results agreeing with those in published papers by other authors.
基金Funded by the of the Key Teachers Foundation under the State Ministry Education.
文摘The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs of equivalent bandwidth filters with different center frequency. The corresponding WPD entropy values of coefficients increase sharply when the discrete spectrum interferences (DSIs), frequency spectrum of which is centered at several frequency points existing in some frequency region. Based on WPD, an entropy threshold method (ETM) is put forward, in which entropy is used to determine whether partial discharge (PD) signals are interfered by DSIs. Simulation and real data processing demonstrate that ETM works with good efficiency, without pre-knowing DSI information. ETM extracts the phase of PD pulses accurately and can calibrate the quantity of single type discharge.
基金The Projects is jointly supported by National Natural Science Foundation of China and Civil Aviation Administration of China [U1433118], also jointly supported by Hunan Provincial Natural Science Foundation of China and Xiangtan Municipal Science and Technology Bureau [ 14J J5011 ].
基金supported by the National Natural Science Foundation of China(Grant Nos.62005307 and 61975228).
文摘Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.
文摘Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead.The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models.Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods,including Gaussian process regression,extreme learning machines,artificial neural networks and support vector machines,across all seasons.The proposed model exhibits lower normalized root mean square error(nRMSE)(2.116%)and root mean square error(RMSE)(208.233 kW)values,along with a higher coefficient of determination(R^(2))of 99.881%.Furthermore,the exceptional performance of the model is maintained even when tested with various prediction horizons.However,as the forecast horizon extends from 1.5 to 5.5 hours,the prediction accuracy decreases,evident by the increase in the RMSE(710.839 kW)and nRMSE(7.276%),and a decrease in R2(98.462%).Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results.This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model,suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy,thereby contributing to more efficient grid management.
基金National Natural Science Foundation of China(No.51303131)
文摘Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.
文摘The state equation and observation equation of the structural dynamic systems under various analysis scales are derived based on wavelet packet analysis. The time-frequency properties of structural dynamic response under various scales are further formulated. The theoretical analysis results reveal that the wavelet packet energy spectrum (WPES) obtained from wavelet packet decomposition of structural dynamic response will detect the presence of structural damage. The sensitivity analysis of the WPES to structural damage and measurement noise is also performed. The transfer properties of the structural system matrix and the observation noise under various analysis scales are formulated, which verify the damage alarming reliability using the proposed WPES with preferable damage sensitivity and noise robusticity.
基金The Natural Science Foundation of Heilongjiang Province ( No. F201018)the National Natural Science Foundation of China( No. 60901042)
文摘In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.
文摘In order to storage resource of a radar recognition system, schemes for reducing data storage and for correlation discrimination of radar based on wavelet packets were proposed Experiment results at various signal-to-noise ratios were given The given.ability of the reduced data method's validity are supported by experimental results. Using optimal basis can get higher successful recognition rate using rigid wavelet basis.
文摘On the basis of analyzing the principle of the space-time coding technique and the multi-carrier code division multiple access (MC-CDMA) technique, adopting the turbo codes as channel coding and the optimized complex wavelet packet as multi-carrier modulation, a novel space-time block coded the MC-CDMA system based on complex wavelet packet and turbo coding is proposed, and the system bit error rate (BER) performance in the Rayleigh fading channel is investigated. The system can make full use of space-time block codes' transmit diversity and turbo codes' good ability against fading channel to improve the BER performance significantly, and it can also avoid the decrease of spectrum efficiency of conventional MC-CDMA due to inserting cyclic prefix (CP) by utilizing superior characteristics of the optimized complex wavelet packet. Simulation results show that the proposed space-time block coded MC-CDMA system based on the complex wavelet packet performs better than the conventional space-time block coded MC-CDMA (STBC-MC-CDMA) system, and slightly outperforms the STBC-MC-CDMA with CP. Moreover, the application of the space-time block coding technique concatenated with turbo codes strengthens the system ability to combat various interferences in fading channel further.
基金National Hi-Tech Research and Development Program of China (863 Program) (No. 2006AA04Z416)the National Natural Science Foundation of China Under Grant No. 50538020
文摘During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage, This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT- based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices VD reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index VD is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.