期刊文献+
共找到994篇文章
< 1 2 50 >
每页显示 20 50 100
Enhanced Fourier Transform Using Wavelet Packet Decomposition
1
作者 Wouladje Cabrel Golden Tendekai Mumanikidzwa +1 位作者 Jianguo Shen Yutong Yan 《Journal of Sensor Technology》 2024年第1期1-15,共15页
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti... Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method. 展开更多
关键词 Fourier Transform wavelet packet decomposition Time-Frequency Analysis Non-Stationary Signals
下载PDF
A novel internet traffic identification approach using wavelet packet decomposition and neural network 被引量:6
2
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《Journal of Central South University》 SCIE EI CAS 2012年第8期2218-2230,共13页
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network... Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network. 展开更多
关键词 neural network particle swarm optimization statistical characteristic traffic identification wavelet packet decomposition
下载PDF
Separation of closely spaced modes by combining complex envelope displacement analysis with method of generating intrinsic mode functions through filtering algorithm based on wavelet packet decomposition 被引量:3
3
作者 Y.S.KIM 陈立群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期801-810,共10页
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo... One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method. 展开更多
关键词 empirical mode decomposition (EMD) wavelet packet decomposition com- plex envelope displacement analysis (CEDA) closely spaced modes modal identification
下载PDF
Time Domain Signal Analysis Using Wavelet Packet Decomposition Approach 被引量:3
4
作者 M. Y. Gokhale Daljeet Kaur Khanduja 《International Journal of Communications, Network and System Sciences》 2010年第3期321-329,共9页
This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated... This paper explains a study conducted based on wavelet packet transform techniques. In this paper the key idea underlying the construction of wavelet packet analysis (WPA) with various wavelet basis sets is elaborated. Since wavelet packet decomposition can provide more precise frequency resolution than wavelet decomposition the implementation of one dimensional wavelet packet transform and their usefulness in time signal analysis and synthesis is illustrated. A mother or basis wavelet is first chosen for five wavelet filter families such as Haar, Daubechies (Db4), Coiflet, Symlet and dmey. The signal is then decomposed to a set of scaled and translated versions of the mother wavelet also known as time and frequency parameters. Analysis and synthesis of the time signal is performed around 8 seconds to 25 seconds. This was conducted to determine the effect of the choice of mother wavelet on the time signals. Results are also prepared for the comparison of the signal at each decomposition level. The physical changes that are occurred during each decomposition level can be observed from the results. The results show that wavelet filter with WPA are useful for analysis and synthesis purpose. In terms of signal quality and the time required for the analysis and synthesis, the Haar wavelet has been seen to be the best mother wavelet. This is taken from the analysis of the signal to noise ratio (SNR) value which is around 300 dB to 315 dB for the four decomposition levels. 展开更多
关键词 WPA wavelet packet decomposition (wpd) SNR HAAR
下载PDF
Features of energy distribution for blast vibration signals based on wavelet packet decomposition 被引量:4
5
作者 LING Tong-hua LI Xi-bing DAI Ta-gen PENG Zhen-bin 《Journal of Central South University of Technology》 2005年第z1期135-140,共6页
Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time non... Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria. 展开更多
关键词 BLASTING vibration NON-STATIONARY RANDOM signal energy distribution wavelet TRANSFORM wavelet packet decomposition
下载PDF
Adaptive Bearing Fault Diagnosis based on Wavelet Packet Decomposition and LMD Permutation Entropy 被引量:1
6
作者 WANG Ming-yue MIAO Bing-rong YUAN Cheng-biao 《International Journal of Plant Engineering and Management》 2016年第4期202-216,共15页
Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which ... Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy 展开更多
关键词 fault diagnosis wavelet packet decomposition wpd local mean decomposition LMD permutation entropy support vector machine (SVM)
下载PDF
Wavelet packet decomposition entropy threshold method for discrete spectrum interferences rejection of on-line partial discharge monitoring
7
作者 唐炬 SUN Caixin +1 位作者 SONG Shengli LI Jian 《Journal of Chongqing University》 CAS 2003年第1期9-12,共4页
The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs ... The frequency domain division theory of dyadic wavelet decomposition and wavelet packet decomposition (WPD) with orthogonal wavelet base frame are presented. The WPD coefficients of signals are treated as the outputs of equivalent bandwidth filters with different center frequency. The corresponding WPD entropy values of coefficients increase sharply when the discrete spectrum interferences (DSIs), frequency spectrum of which is centered at several frequency points existing in some frequency region. Based on WPD, an entropy threshold method (ETM) is put forward, in which entropy is used to determine whether partial discharge (PD) signals are interfered by DSIs. Simulation and real data processing demonstrate that ETM works with good efficiency, without pre-knowing DSI information. ETM extracts the phase of PD pulses accurately and can calibrate the quantity of single type discharge. 展开更多
关键词 partial discharge(PD) discrete spectrum interference(DSI) wavelet packet decomposition(wpd) ENTROPY
下载PDF
Fault Pattern Recognition of Rolling Bearing Based on Wavelet Packet Decomposition and BP Network
8
作者 Liangpei Huang Chaowei Wu Jing Wang 《信息工程期刊(中英文版)》 2015年第1期7-13,共7页
关键词 滚动轴承故障 故障模式识别 BP网络模型 小波包分解 BP神经网络 振动信号 模式识别技术 能量特征
下载PDF
数控机床电动主轴WPD-TSNE-SVM模型故障诊断
9
作者 李坤宏 江桂云 朱代兵 《机械科学与技术》 CSCD 北大核心 2024年第5期832-836,共5页
为了提高数控机床电动主轴故障诊断效率,设计了一种WPD-TSNE-SVM组合模型。利用小波包方法分解主轴振动信号,并完成样本集TSNE降维的过程,利用SVM完成重构特征的故障分类。构建数控机床主轴信号混合特征空间向量,并进行故障诊断分析。... 为了提高数控机床电动主轴故障诊断效率,设计了一种WPD-TSNE-SVM组合模型。利用小波包方法分解主轴振动信号,并完成样本集TSNE降维的过程,利用SVM完成重构特征的故障分类。构建数控机床主轴信号混合特征空间向量,并进行故障诊断分析。研究结果表明:TSNE方法训练样数据形成规律分布特点,采用非线性SVM多故障分类器实现小波包混合特征的故障准确分类。根据径向基核函数建立的非线性SVM诊断方法获得更高准确率。该方法诊断轴承运行故障,获得更高维护效率,确保数控机床主轴运行稳定性。 展开更多
关键词 数控机床 电动主轴 故障诊断 小波包分解
下载PDF
基于WPD-ARIMA-GARCH组合模型的酱卤肉制品安全风险区间预测 被引量:1
10
作者 尹佳 黄茜 +7 位作者 陈翔 陈晨 陈锂 张涛 徐成 黄亚平 郭鹏程 文红 《食品科学》 EI CAS CSCD 北大核心 2024年第3期176-184,共9页
针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,... 针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型进行预测;在区间估计部分,使用广义自回归条件异方差(generalized autoregressive conditional heteroskedast,GARCH)模型对残差进行预测。本实验将建立的WPD-ARIMA-GARCH组合模型运用于某地区酱卤肉制品的风险预测,结果表明2019年的3月底和7月底该地区的酱卤肉制品安全风险较高,与实际情况相符;同时,该模型在10个不同地区的酱卤肉制品风险预测中,均方误差、平均绝对误差和平均绝对百分比误差分别为1.626、0.806和20.824;其90%置信区间的预测区间平均宽度和覆盖宽度标准值均为0.024,可以覆盖所有真实值。该模型具有较高的预测精度和较低的误差,能对酱卤肉制品质量安全起到风险防控作用,可为日常食品安全监管提供相应的技术支持。 展开更多
关键词 酱卤肉制品 小波包分解 差分自回归移动平均模型 广义自回归条件异方差模型 区间估计
下载PDF
基于WPD-EMD-WPD的地下工程微震信号降噪方法研究
11
作者 林鑫 李彪 +2 位作者 杨春鸣 钟维明 徐奴文 《工程地质学报》 CSCD 北大核心 2024年第2期581-589,共9页
微震信号中的背景噪声会影响初至拾取、震源定位及参数反演,合理有效的降噪方法是微震监测技术成功应用于工程建设的重要基础。本文提出一种基于WPD-EMD-WPD的方法抑制噪声,并采用信偏比衡量降噪效果。该方法首先对含噪信号小波包预降噪... 微震信号中的背景噪声会影响初至拾取、震源定位及参数反演,合理有效的降噪方法是微震监测技术成功应用于工程建设的重要基础。本文提出一种基于WPD-EMD-WPD的方法抑制噪声,并采用信偏比衡量降噪效果。该方法首先对含噪信号小波包预降噪,实现初次滤波;然后对预降噪后的信号进行经验模态分解(Empirical Mode Decomposition,EMD),自适应分解得到IMFS,通过相关系数法确定IMFS分解分量位置;最后,对分界分量之前的高频分量小波包降噪,再与低频分量重构。分别使用小波包、EMD、EMD-WPD、WPD-EMD-WPD 4种方法进行仿真实验,对含噪Ricker子波降噪处理,通过对比降噪前后的降噪效果衡量指标、频谱图、波形图对比发现,WPD-EMD-WPD降噪效果更优,且信偏比与其他降噪指标有良好对应性。将该方法应用于国内某大型水电工程地下洞室,结果表明,该方法能获得更低的信偏比,且能更好地反映初至时刻和岩石微破裂信息。 展开更多
关键词 微震信号降噪 信偏比 经验模态分解 相关系数 小波包
下载PDF
基于WPD的光缆中间接头局部光纤通信信号去噪技术研究 被引量:2
12
作者 沈巍 邓少平 +1 位作者 王丰 张鹏 《粘接》 CAS 2024年第2期179-181,185,共4页
光缆运行工作过程中,由于光缆质地较脆,抗机械摩擦强度较差,光缆中间接头部分易产生局部的通信信号噪声干扰。为此,设计基于小波包分解(WPD)的光缆中间接头局部光纤通信信号去噪方法。从白噪声和窄带噪声2个方面,结合损伤区域提取损伤... 光缆运行工作过程中,由于光缆质地较脆,抗机械摩擦强度较差,光缆中间接头部分易产生局部的通信信号噪声干扰。为此,设计基于小波包分解(WPD)的光缆中间接头局部光纤通信信号去噪方法。从白噪声和窄带噪声2个方面,结合损伤区域提取损伤后的局部噪声干扰特性,设置WPD算法的去噪阈值。以分层去噪的方式得出局部光纤通信信号去噪结果。实验结果表明,在不同的损伤干扰强度条件下,所提方法得出光纤通信信号的信噪比较高,去噪效果好。 展开更多
关键词 光缆中间接头 光纤通信 小波包分解算法 损伤干扰 信号去噪
下载PDF
Enhancing photovoltaic energy forecasting:a progressive approach using wavelet packet decomposition
13
作者 Khaled Ferkous Mawloud Guermoui +2 位作者 Abderahmane Bellaour Tayeb boulmaiz Nadjem Bailek 《Clean Energy》 EI CSCD 2024年第3期95-108,共14页
Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression w... Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead.The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models.Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods,including Gaussian process regression,extreme learning machines,artificial neural networks and support vector machines,across all seasons.The proposed model exhibits lower normalized root mean square error(nRMSE)(2.116%)and root mean square error(RMSE)(208.233 kW)values,along with a higher coefficient of determination(R^(2))of 99.881%.Furthermore,the exceptional performance of the model is maintained even when tested with various prediction horizons.However,as the forecast horizon extends from 1.5 to 5.5 hours,the prediction accuracy decreases,evident by the increase in the RMSE(710.839 kW)and nRMSE(7.276%),and a decrease in R2(98.462%).Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results.This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model,suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy,thereby contributing to more efficient grid management. 展开更多
关键词 short photovoltaic power forecasting wavelet packet decomposition sub-series reconstruction machine learning in energy forecasting sustainable power stations renewable energy
原文传递
基于PCA-WPD优化的电流互感器故障检测方法研究
14
作者 樊浩研 刘杨 李璟 《粘接》 CAS 2024年第5期193-196,共4页
针对电磁式电流互感器测量误差的长期稳定性较差问题,提出主成分分析小波包分解的电流互感器故障测量误差自检测方法。利用小波包分解优化残差统计量,可以消除电流互感器设备中节点不平衡和随机误差对检测分析结果的影响。实验结果表明... 针对电磁式电流互感器测量误差的长期稳定性较差问题,提出主成分分析小波包分解的电流互感器故障测量误差自检测方法。利用小波包分解优化残差统计量,可以消除电流互感器设备中节点不平衡和随机误差对检测分析结果的影响。实验结果表明,随着测量误差的增加,测量数据的残差统计量逐渐增加。所提出的电流互感器故障检测方法能较好地满足0.2级精度的要求,且可以检测到电流互感器异常数据占90.97%,占总数的53.17%。该方法能够及时准确地实现电流互感器故障测量误差的自检测。 展开更多
关键词 电流互感器 故障 检测 预测误差 小波包分解
下载PDF
基于CEEMDAN-PE-WPD和多目标优化的超短期风电功率预测方法 被引量:3
15
作者 常雨芳 杨子潇 +2 位作者 潘风 唐杨 黄文聪 《电网技术》 EI CSCD 北大核心 2023年第12期5015-5025,共11页
为了提高风电功率预测的精度,提出了一种基于总体平均经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)、小波包分解(wavelet packet decomposition,WPD)... 为了提高风电功率预测的精度,提出了一种基于总体平均经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)、小波包分解(wavelet packet decomposition,WPD)和多目标优化的超短期风电功率预测方法。首先,利用CEEMDAN、PE和WPD构成的信号处理方法降低原始风电信号的随机性和波动性;然后,将分解后的子分量输入到长短期记忆(long short-term memory,LSTM)神经网络,并且利用精英T分布麻雀优化算法(elite t-distribution sparrow optimization algorithm,ETSSA)优化LSTM的隐藏层单元数,提升LSTM网络的预测性能;最后,建立多目标优化损失函数,将准确率、稳定度和合格率3个优化目标同时加入到损失函数中,综合提升模型的预测性能。对内蒙古某地区风力发电场的实测数据进行实验分析结果表明,与其他经典预测方法相比,所提方法提升风电功率预测性能有显著效果,并且在不同季节风况下预测效果良好。 展开更多
关键词 超短期风电功率预测 总体平均经验模态分解 排列熵 小波包分解 长短期记忆神经 精英T分布麻雀优化算法 多目标优化
下载PDF
基于ASWPD-BO-GRU的月径流量预测模型 被引量:2
16
作者 唐铭泽 杨银科 张菁雯 《水资源与水工程学报》 CSCD 北大核心 2023年第4期84-91,共8页
为提高月径流量预测精度,并针对传统分解集成径流预测模型错误使用未来数据的问题,提出并建立了基于自适应小波包分解(ASWPD)和贝叶斯优化(BO)的门控循环单元(GRU)月径流量预测模型(ASWPD-BO-GRU)。首先,利用ASWPD对原始月径流量时间序... 为提高月径流量预测精度,并针对传统分解集成径流预测模型错误使用未来数据的问题,提出并建立了基于自适应小波包分解(ASWPD)和贝叶斯优化(BO)的门控循环单元(GRU)月径流量预测模型(ASWPD-BO-GRU)。首先,利用ASWPD对原始月径流量时间序列进行分解,在不使用未来数据的前提下得到4个相对规律的分解子序列,以降低预测难度;然后,利用BO优选分解后的子序列对应的GRU模型超参数;最终,对每个子序列进行预测,将预测结果相加重组得出月径流量预测结果。将提出并建立的模型应用于黑河流域莺落峡水文站月径流量预测中,并与GRU、BO-GRU、WPD-BO-GRU模型(基于传统分解思想对原始月径流量时间序列整体进行分解的预测模型)的预测结果进行对比。结果表明:ASWPD-BO-GRU模型的纳什效率系数(NSE)为0.89,在实例应用中预测精度最高,说明ASWPD-BO-GRU模型在正确分解的前提下具有较高的预测精度和更强的泛化能力。 展开更多
关键词 月径流量预测 自适应动态分解策略 小波包分解 贝叶斯优化 门控循环单元
下载PDF
Application and improvement of wavelet packet de-noising in satellite transponder
17
作者 Yannian Lou Chaojie Zhang +1 位作者 Xiaojun Jin Zhonghe Jin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期671-679,共9页
The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise con... The satellite transponder is a widely used module in satellite missions, and the most concerned issue is to reduce the noise of the transferred signal. Otherwise, the telemetry signal will be polluted by the noise contained in the transferred signal, and the additional power will be consumed. Therefore, a method based on wavelet packet de-noising (WPD) is introduced. Compared with other techniques, there are two features making WPD more suit- able to be applied to satellite transponders: one is the capability to deal with time-varying signals without any priori information of the input signals; the other is the capability to reduce the noise in band, even if the noise overlaps with signals in the frequency domain, which provides a great de-noising performance especially for wideband signals. Besides, an oscillation detector and an av- eraging filter are added to decrease the partial oscillation caused by the thresholding process of WPD. Simulation results show that the proposed algorithm can reduce more noises and make less distortions of the signals than other techniques. In addition, up to 12 dB additional power consumption can be reduced at -10 dB signal-to-noise ratio (SNR). 展开更多
关键词 wavelet packet de-noising (wpd satellite transpon-der power consumption reduction real-time de-noising.
下载PDF
WPD-COA-EL M模型在汛期月降水量时间序列预测中的应用研究 被引量:5
18
作者 杨琼波 崔东文 《水文》 CSCD 北大核心 2023年第1期17-23,共7页
针对月降水量时间序列多尺度非平稳性特点,提出小波包分解(WPD)-白骨顶鸟优化算法(COA)-极限学习机(ELM)相融合的降水量预测模型。首先,利用WPD将非平稳月降水量时间序列分解为若干子序列分量;然后在不同维度条件下利用6个典型函数对CO... 针对月降水量时间序列多尺度非平稳性特点,提出小波包分解(WPD)-白骨顶鸟优化算法(COA)-极限学习机(ELM)相融合的降水量预测模型。首先,利用WPD将非平稳月降水量时间序列分解为若干子序列分量;然后在不同维度条件下利用6个典型函数对COA进行仿真测试;利用COA优化ELM输入层权值和隐含层偏值,对每一个子序列分量分别建立COA-ELM模型进行预测,将预测结果叠加重构后即为最终预测结果;最后,以云南省龙潭站汛期和主汛期月降水量数据为例进行实验,并与WPD-COA-BP、WPD-ELM、WPD-BP预测模型进行比较。结果表明:COA在不同维度条件下均具有较好的寻优精度和全局搜索能力。WPD-COA-ELM模型对实例汛期、主汛期月降水量时间序列预测的平均绝对百分比误差分别为3.91%、3.59%,预测精度优于WPD-COA-BP模型,远优于WPD-ELM.WPD-BP模型。WPD能科学降低月降水时间序列数据的复杂性,提高预测效果;COA能有效优化ELM输入层权值和隐含层偏值,提高ELM网络性能。 展开更多
关键词 降水量预测 小波包分解 白骨顶鸟优化算法 极限学习机 仿真测试
下载PDF
基于WPD-AHA-ELM模型的水质时间序列多步预测 被引量:14
19
作者 崔东文 袁树堂 《三峡大学学报(自然科学版)》 CAS 2023年第1期6-13,共8页
根据水质时间序列多尺度、非平稳特性,并基于“分解-预测-重构”思想,提出小波包分解(WPD)-人工蜂鸟算法(AHA)-极限学习机(ELM)组合多步预测模型,并应用于云南省昆明西苑隧道断面pH值、CODmn、DO、NH_(3)-N多步预测.首先介绍AHA原理,在... 根据水质时间序列多尺度、非平稳特性,并基于“分解-预测-重构”思想,提出小波包分解(WPD)-人工蜂鸟算法(AHA)-极限学习机(ELM)组合多步预测模型,并应用于云南省昆明西苑隧道断面pH值、CODmn、DO、NH_(3)-N多步预测.首先介绍AHA原理,在不同维度条件下选取6个典型函数对AHA进行仿真测试,并与灰狼优化(GWO)算法、旗鱼优化(SFO)算法、粒子群优化(PSO)算法的仿真结果进行比较;其次利用WPD对水质时序数据进行小波包分解,以降低水质序列数据的复杂度;并在延迟时间为1的情况下,采用Cao方法确定各子序列分量的输入、输出;最后通过各分量训练样本构建ELM适应度函数,采用AHA对适应度函数进行寻优,利用寻优获得的最佳ELM输入层权值和隐含层偏值建立WPD-AHA-ELM模型对各子序列分量进行超前1步至超前5步预测,将预测结果加和重构得到最终多步预测结果.结果表明:AHA具有较好的寻优精度和全局搜索能力,寻优精度优于GWO、SFO、PSO算法.WPD-AHA-ELM模型对实例断面pH、CODmn、DO、NH_(3)-N超前1步至超前5步预测的平均绝对百分比误差分别在0.05%~1.23%、0.10%~3.15%、0.13%~3.67%、0.65%~10.6%之间,具有较小的预测误差,其中尤以超前1步至超前3步的预测效果最好.WPD-AHA-ELM模型预测精度随着超前预测步数的增加而降低. 展开更多
关键词 水质预测 小波包分解 人工蜂鸟算法 极限学习机 仿真测试 多步预测
下载PDF
Distance Measuring Equipment Pulse Interference Suppression Based on Wavelet Packet Analysis
20
作者 Qiao Yao Kewen Sun 《Advances in Aerospace Science and Technology》 2021年第1期67-79,共13页
As an indispensable part of </span><span style="font-family:Verdana;">global</span><span style="font-family:Verdana;"> satellite navigation system, the frequency band of DME... As an indispensable part of </span><span style="font-family:Verdana;">global</span><span style="font-family:Verdana;"> satellite navigation system, the frequency band of DME will overlap with that of the navigation signal, which will cause the signal from the DME platform to be accepted by the Global Navigation Satellite System receiver and form interference. Therefore, it is of great significance to study an effective algorithm to suppress DME pulse interference. This paper has the following research on this problem. In this paper, wavelet packet transform is used to solve for the suppression of </span><span style="font-family:Verdana;">DME</span><span style="font-family:Verdana;"> pulse interference method, wavelet packet analysis belongs to the linear time-frequency analysis method, it has good time-frequency localization characteristics and the signal adaptive ability, due to the function of wavelet packet and parameter selection of DME will affect the ability of interference suppression, combining with the theory of wavelet </span><span style="font-family:Verdana;">threshold</span><span style="font-family:Verdana;">, function type and decomposition series are discussed to prove the validity of the selected parameters on the pulse interference suppression</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. 展开更多
关键词 Global Navigation Satellite System Rangefinder Pulse Jamming wavelet packet decomposition
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部