Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in...Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.展开更多
This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of nois...This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of noisy images, the original image can be reconstructed correctly. Different threshold selections and thresholding methods are discussed. A new robust local threshold scheme is proposed. Quantifying the performance of image denoising schemes by using the mean square error, the performance of the robust local threshold scheme is demonstrated and is compared with the universal threshold scheme. The experiment shows that image denoising using the robust local threshold performs better than that using the universal threshold.展开更多
The accuracy of modal parameter estimation plays a crucial role in flutter boundary prediction. A new wavelet denoising method is introduced for flight flutter testing data, which can improve the estimation of frequen...The accuracy of modal parameter estimation plays a crucial role in flutter boundary prediction. A new wavelet denoising method is introduced for flight flutter testing data, which can improve the estimation of frequency domain identification algorithms. In this method, the testing data is first preprocessed with a gradient inverse weighted filter to initially lower the noise. The redundant wavelet transform is then used to decompose the signal into several levels. A “clean” input is recovered from the noisy data by level dependent thresholding approach, and the noise of output is reduced by a modified spatially selective noise filtration technique. The advantage of the wavelet denoising is illustrated by means of simulated and real data.展开更多
文摘Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.
基金Supported by the National Natural Science Foundation of China(No.59775070)
文摘This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of noisy images, the original image can be reconstructed correctly. Different threshold selections and thresholding methods are discussed. A new robust local threshold scheme is proposed. Quantifying the performance of image denoising schemes by using the mean square error, the performance of the robust local threshold scheme is demonstrated and is compared with the universal threshold scheme. The experiment shows that image denoising using the robust local threshold performs better than that using the universal threshold.
文摘The accuracy of modal parameter estimation plays a crucial role in flutter boundary prediction. A new wavelet denoising method is introduced for flight flutter testing data, which can improve the estimation of frequency domain identification algorithms. In this method, the testing data is first preprocessed with a gradient inverse weighted filter to initially lower the noise. The redundant wavelet transform is then used to decompose the signal into several levels. A “clean” input is recovered from the noisy data by level dependent thresholding approach, and the noise of output is reduced by a modified spatially selective noise filtration technique. The advantage of the wavelet denoising is illustrated by means of simulated and real data.