This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of nois...This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of noisy images, the original image can be reconstructed correctly. Different threshold selections and thresholding methods are discussed. A new robust local threshold scheme is proposed. Quantifying the performance of image denoising schemes by using the mean square error, the performance of the robust local threshold scheme is demonstrated and is compared with the universal threshold scheme. The experiment shows that image denoising using the robust local threshold performs better than that using the universal threshold.展开更多
The accuracy of modal parameter estimation plays a crucial role in flutter boundary prediction. A new wavelet denoising method is introduced for flight flutter testing data, which can improve the estimation of frequen...The accuracy of modal parameter estimation plays a crucial role in flutter boundary prediction. A new wavelet denoising method is introduced for flight flutter testing data, which can improve the estimation of frequency domain identification algorithms. In this method, the testing data is first preprocessed with a gradient inverse weighted filter to initially lower the noise. The redundant wavelet transform is then used to decompose the signal into several levels. A “clean” input is recovered from the noisy data by level dependent thresholding approach, and the noise of output is reduced by a modified spatially selective noise filtration technique. The advantage of the wavelet denoising is illustrated by means of simulated and real data.展开更多
This paper presents a wavelet-based hybrid threshold method according to the soft- and hard-threshold functions proposed by Donoho. The wavelet-based hybrid threshold method may help doctors to know more details on th...This paper presents a wavelet-based hybrid threshold method according to the soft- and hard-threshold functions proposed by Donoho. The wavelet-based hybrid threshold method may help doctors to know more details on the liver disease through denoising the ultrasound image of the liver. First of all, an analytical expression for the hybrid threshold function is discussed. The wavelet-based hybrid threshold method is then investigated for ultrasound image of the liver. Finally, we test the influence of this parameter on the proposed method with the real ultrasound image corrupted by speckle noise with different variances. Moreover, we compare the proposed method under the varying parameters with the soft-threshold function and the hard-threshold function. Three metrics, which are correlation coefficient, edge preservation index and structural similarity index, are measured to quantify the denoised results of ultrasound liver image. Experimental results demonstrate the potential of the proposed method for ultrasound liver image denosing.展开更多
基金Supported by the National Natural Science Foundation of China(No.59775070)
文摘This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of noisy images, the original image can be reconstructed correctly. Different threshold selections and thresholding methods are discussed. A new robust local threshold scheme is proposed. Quantifying the performance of image denoising schemes by using the mean square error, the performance of the robust local threshold scheme is demonstrated and is compared with the universal threshold scheme. The experiment shows that image denoising using the robust local threshold performs better than that using the universal threshold.
文摘The accuracy of modal parameter estimation plays a crucial role in flutter boundary prediction. A new wavelet denoising method is introduced for flight flutter testing data, which can improve the estimation of frequency domain identification algorithms. In this method, the testing data is first preprocessed with a gradient inverse weighted filter to initially lower the noise. The redundant wavelet transform is then used to decompose the signal into several levels. A “clean” input is recovered from the noisy data by level dependent thresholding approach, and the noise of output is reduced by a modified spatially selective noise filtration technique. The advantage of the wavelet denoising is illustrated by means of simulated and real data.
基金the Fundamental Research Funds for the Central Universities of China(No.YS1404)the Beijing University of Chemical Technology Interdisciplinary Funds for "Visual Media Computing"
文摘This paper presents a wavelet-based hybrid threshold method according to the soft- and hard-threshold functions proposed by Donoho. The wavelet-based hybrid threshold method may help doctors to know more details on the liver disease through denoising the ultrasound image of the liver. First of all, an analytical expression for the hybrid threshold function is discussed. The wavelet-based hybrid threshold method is then investigated for ultrasound image of the liver. Finally, we test the influence of this parameter on the proposed method with the real ultrasound image corrupted by speckle noise with different variances. Moreover, we compare the proposed method under the varying parameters with the soft-threshold function and the hard-threshold function. Three metrics, which are correlation coefficient, edge preservation index and structural similarity index, are measured to quantify the denoised results of ultrasound liver image. Experimental results demonstrate the potential of the proposed method for ultrasound liver image denosing.