The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has b...The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has been found that the locations of singularities after wavelet transform are only affected by two factors, their original locations and the seismic wavelet length, which says it does not matter with what shape the wavelet will be. The wavelet length can be determined according to the wavelet transform results and be eliminated thereafter so that we are able to detect thin bed seismic signal with resolution of l/32 wavelength. The singularities have been recovered with improved resolution of the seismic section by real data processing.展开更多
Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime,...Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime, a nonlinear method is proposed based on the higher order statistics, on the other aspect, which characterizes the higher order singular spectrum (HOSS) of chaotic signals. All computations are done with Lorenz attractor, Rossler attractor and EEG(electroencephalogram) time series and the comparisions among these results are made. The experimental results show that the Lipschitz exponents and the higher order singular spectra of these signals are significantly different from each other, which indicates these methods are effective for studing the singularity of chaotic signals.展开更多
In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most pr...In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most promising new approaches for extracting noise hidden information from noisy time series . Because of singularity strength is hard to calculate accurately, a wavelet transform modulus maxima method was used to get singularity spectrum. The singularity spectrum of white noise and aluminium interconnection electromigration noise was calculated and analyzed. The experimental results show that the new algorithm is more accurate than tradition estimating algorithm. The proposed method is feasible and efficient.展开更多
Continuous wavelet transform is employed to detect singularities in 2-D signals by tracking modulus maxima along maxima lines and particularly applied to microcalcification detection in mammograms. The microcalcificat...Continuous wavelet transform is employed to detect singularities in 2-D signals by tracking modulus maxima along maxima lines and particularly applied to microcalcification detection in mammograms. The microcalcifications are modeled as smoothed positive impulse functions. Other target property detection can be performed by adjusting its mathematical model. In this application, the general modulus maximum and its scale of each singular point are detected and statistically analyzed locally in its neighborhood. The diagnosed microcalcification cluster results are compared with health tissue results, showing that general modulus maxima can serve as a suspicious spot detection tool with the detection performance no significantly sensitive to the breast tissue background properties. Performed fractal analysis of selected singularities supports the statistical findings. It is important to select the suitable computation parameters-thresholds of magnitude, argument and frequency range-in accordance to mathematical description of the target property as well as spatial and numerical resolution of the analyzed signal. The tests are performed on a set of images with empirically selected parameters for 200 μm/pixel spatial and 8 bits/pixel numerical resolution, appropriate for detection of the suspicious spots in a mammogram. The results show that the magnitude of a singularity general maximum can play a significant role in the detection of microcalcification, while zooming into a cluster in image finer spatial resolution both magnitude of general maximum and the spatial distribution of the selected set of singularities may lead to the breast abnormality characterization.展开更多
In this paper, a new feature space for PD (partial discharge) signal separation is presented. Three typical PD defects were experimentally reproduced in a laboratory for obtaining independent PD sources. Signals wer...In this paper, a new feature space for PD (partial discharge) signal separation is presented. Three typical PD defects were experimentally reproduced in a laboratory for obtaining independent PD sources. Signals were acquired with a digital storage oscilloscope and then post-processed with DWT (discrete Wavelet transform) for de-noising. The new feature space for PD source separation was constructed with the variance of each Wavelet coefficient vector and was compared with an established feature space for PD source separation; based on the energy of DWT coefficient vectors. After a space reduction by mean of PCA (principal components analysis), the separation capability among them was measured by comparing the final classification error after training a neural network Results showed that with this new feature space it is possible to separate different sources of PD signals. Later, the feature space proposed was used to separate two PD sources from a real equipment tested. Further analysis on the reduced feature space has shown the band location of PD signals information for separating purpose.展开更多
The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andf...The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing.展开更多
文摘The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has been found that the locations of singularities after wavelet transform are only affected by two factors, their original locations and the seismic wavelet length, which says it does not matter with what shape the wavelet will be. The wavelet length can be determined according to the wavelet transform results and be eliminated thereafter so that we are able to detect thin bed seismic signal with resolution of l/32 wavelength. The singularities have been recovered with improved resolution of the seismic section by real data processing.
基金Science Foundation of Educational Commission of Fujian Province of China (Grant NO:JAO04238)
文摘Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime, a nonlinear method is proposed based on the higher order statistics, on the other aspect, which characterizes the higher order singular spectrum (HOSS) of chaotic signals. All computations are done with Lorenz attractor, Rossler attractor and EEG(electroencephalogram) time series and the comparisions among these results are made. The experimental results show that the Lipschitz exponents and the higher order singular spectra of these signals are significantly different from each other, which indicates these methods are effective for studing the singularity of chaotic signals.
基金Foundation item: National Natural Science Foundation of China(No.60372072)
文摘In order to reduce the hidden danger of noise which can be charactered by singularity spectrum, a new algorithm based on wavelet transform modulus maxima method was proposed. Singularity analysis is one of the most promising new approaches for extracting noise hidden information from noisy time series . Because of singularity strength is hard to calculate accurately, a wavelet transform modulus maxima method was used to get singularity spectrum. The singularity spectrum of white noise and aluminium interconnection electromigration noise was calculated and analyzed. The experimental results show that the new algorithm is more accurate than tradition estimating algorithm. The proposed method is feasible and efficient.
文摘Continuous wavelet transform is employed to detect singularities in 2-D signals by tracking modulus maxima along maxima lines and particularly applied to microcalcification detection in mammograms. The microcalcifications are modeled as smoothed positive impulse functions. Other target property detection can be performed by adjusting its mathematical model. In this application, the general modulus maximum and its scale of each singular point are detected and statistically analyzed locally in its neighborhood. The diagnosed microcalcification cluster results are compared with health tissue results, showing that general modulus maxima can serve as a suspicious spot detection tool with the detection performance no significantly sensitive to the breast tissue background properties. Performed fractal analysis of selected singularities supports the statistical findings. It is important to select the suitable computation parameters-thresholds of magnitude, argument and frequency range-in accordance to mathematical description of the target property as well as spatial and numerical resolution of the analyzed signal. The tests are performed on a set of images with empirically selected parameters for 200 μm/pixel spatial and 8 bits/pixel numerical resolution, appropriate for detection of the suspicious spots in a mammogram. The results show that the magnitude of a singularity general maximum can play a significant role in the detection of microcalcification, while zooming into a cluster in image finer spatial resolution both magnitude of general maximum and the spatial distribution of the selected set of singularities may lead to the breast abnormality characterization.
文摘In this paper, a new feature space for PD (partial discharge) signal separation is presented. Three typical PD defects were experimentally reproduced in a laboratory for obtaining independent PD sources. Signals were acquired with a digital storage oscilloscope and then post-processed with DWT (discrete Wavelet transform) for de-noising. The new feature space for PD source separation was constructed with the variance of each Wavelet coefficient vector and was compared with an established feature space for PD source separation; based on the energy of DWT coefficient vectors. After a space reduction by mean of PCA (principal components analysis), the separation capability among them was measured by comparing the final classification error after training a neural network Results showed that with this new feature space it is possible to separate different sources of PD signals. Later, the feature space proposed was used to separate two PD sources from a real equipment tested. Further analysis on the reduced feature space has shown the band location of PD signals information for separating purpose.
基金Project(51675262)supported by the National Natural Science Foundation of ChinaProject(6140210020102)supported by the Advance Research Field Fund Project of ChinaProject(2016YFD0700800)supported by the National Key Research and Development Plan of China
文摘The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing.