Homologous feature point extraction is a key problem in the optical and synthetic aperture radar (SAR) image registration for islands. A new feature point extraction method using a threshold shrink operator and non-...Homologous feature point extraction is a key problem in the optical and synthetic aperture radar (SAR) image registration for islands. A new feature point extraction method using a threshold shrink operator and non-subsampled wavelet transform (TSO-NSWT) for optical and SAR image registration was proposed. Moreover, the matching for this proposed feature was different from the traditional feature matching strategies and was performed using a similarity measure computed from neighborhood circles in low-frequency bands. Then, a number of reliably matched couples with even distributions were obtained, which assured the accuracy of the registration. Application of the proposed algorithm to SPOT-5 (multi-spectral) and YG-1 (SAR) images showed that a large number of accurately matched couples could be identified. Additionally, both of the root mean square error (RMSE) patterns of the registration parameters computed based on the TSO-NSWT algorithm and traditional NSWT algorithm were analyzed and compared, which further demonstrated the effectiveness of the proposed algorithm. The algorithm can supply the crucial step for island image registration and island recognition.展开更多
For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there...For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there are a lot of original information at the edge during image processing, thus, we can get the real image data in terms of the data acquisition. The usage of edge is often in the case of some irregular geometric objects, and we determine the contour of the image by combining with signal transmitted data. At the present stage, there are different algorithms in image edge detection, however, different types of algorithms have divergent disadvantages so It is diffi cult to detect the image changes in a reasonable range. We try to use wavelet transformation in image edge detection, making full use of the wave with the high resolution characteristics, and combining multiple images, in order to improve the accuracy of image edge detection.展开更多
Aiming at the problem,i.e.infrared images own the characters of bad contrast ratio and fuzzy edges,a method to enhance the contrast of infrared image is given,which is based on stationary wavelet transform.After makin...Aiming at the problem,i.e.infrared images own the characters of bad contrast ratio and fuzzy edges,a method to enhance the contrast of infrared image is given,which is based on stationary wavelet transform.After making stationary wavelet transform to an infrared image,denoising is done by the proposed method of double-threshold shrinkage in detail coefficient matrixes that have high noisy intensity.For the approximation coefficient matrix with low noisy intensity,enhancement is done by the proposed method based on histogram.The enhanced image can be got by wavelet coefficient reconstruction.Furthermore,an evaluation criterion of enhancement performance is introduced.The results show that this algorithm ensures target enhancement and restrains additive Gauss white noise effectively.At the same time,its amount of calculation is small and operation speed is fast.展开更多
In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive ...In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.展开更多
This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of nois...This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of noisy images, the original image can be reconstructed correctly. Different threshold selections and thresholding methods are discussed. A new robust local threshold scheme is proposed. Quantifying the performance of image denoising schemes by using the mean square error, the performance of the robust local threshold scheme is demonstrated and is compared with the universal threshold scheme. The experiment shows that image denoising using the robust local threshold performs better than that using the universal threshold.展开更多
VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identic...VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image.展开更多
An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques ha...An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques have been used to analyze brain tumors,including computed tomography(CT)and magnetic reso-nance imaging(MRI).CT provides information about dense tissues,whereas MRI gives information about soft tissues.However,the fusion of CT and MRI images has little effect on enhancing the accuracy of the diagnosis of brain tumors.Therefore,machine learning methods have been adopted to diagnose brain tumors in recent years.This paper intends to develop a novel scheme to detect and classify brain tumors based on fused CT and MRI images.The pro-posed approach starts with preprocessing the images to reduce the noise.Then,fusion rules are applied to get the fused image,and a segmentation algorithm is employed to isolate the tumor region from the background to isolate the tumor region.Finally,a machine learning classifier classified the brain images into benign and malignant tumors.Computing statistical measures evaluate the classi-fication potential of the proposed scheme.Experimental outcomes are provided,and the Enhanced Flower Pollination Algorithm(EFPA)system shows that it out-performs other brain tumor classification methods considered for comparison.展开更多
Neurochip based on light-addressable potentiometric sensor(LAPS),whose sensing elements are excitable cells,can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed.H...Neurochip based on light-addressable potentiometric sensor(LAPS),whose sensing elements are excitable cells,can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed.Here we report a kind of neurochip with rat pheochromocytoma(PC12) cells hybrid with LAPS and a method of de-noising signals based on wavelet transform.Cells were cultured on LAPS for several days to form networks,and we then used LAPS system to detect the extracellular potentials with signals de-noised according to decomposition in the time-frequency space.The signal was decomposed into various scales,and coefficients were processed based on the properties of each layer.At last,signal was reconstructed based on the new coefficients.The results show that after de-noising,baseline drift is removed and signal-to-noise ratio is increased.It suggests that the neurochip of PC12 cells coupled to LAPS is stable and suitable for long-term and non-invasive measurement of cell electrophysiological properties with wavelet transform,taking advantage of its time-frequency localization analysis to reduce noise.展开更多
Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imag...Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imaging processing. It could match the images and improve the confidence and spatial resolution of the images. Using two algorithms, double thresholds algorithm and denoising algorithm based on wavelet transform,the fluorescence image and transmission image of a Cell were merged into a composite image. Results and Conclusion The position of fluorescence and the structure of cell can be displyed in the composite image. The signal-to-noise ratio of the exultant image is improved to a large extent. The algorithms are not only useful to investigate the fluorescence and transmission images, but also suitable to observing two or more fluoascent label proes in a single cell.展开更多
To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventiona...To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments.展开更多
Image enhancement technology plays a very important role to improve image quality in image processing. By enhancing some information and restraining other information selectively, it can improve image visual effect. T...Image enhancement technology plays a very important role to improve image quality in image processing. By enhancing some information and restraining other information selectively, it can improve image visual effect. The objective of this work is to implement the image enhancement to gray scale images using different techniques. After the fundamental methods of image enhancement processing are demonstrated, image enhancement algorithms based on space and frequency domains are systematically investigated and compared. The advantage and defect of the above-mentioned algorithms are analyzed. The algorithms of wavelet based image enhancement are also deduced and generalized. Wavelet transform modulus maxima(WTMM) is a method for detecting the fractal dimension of a signal, it is well used for image enhancement. The image techniques are compared by using the mean(μ),standard deviation(?), mean square error(MSE) and PSNR(peak signal to noise ratio). A group of experimental results demonstrate that the image enhancement algorithm based on wavelet transform is effective for image de-noising and enhancement. Wavelet transform modulus maxima method is one of the best methods for image enhancement.展开更多
In accordance with the application requirements of high definition(HD) video surveillance systems,a real-time 5/3 lifting wavelet HD-video de-noising system is proposed with frame rate conversion(FRC) based on a field...In accordance with the application requirements of high definition(HD) video surveillance systems,a real-time 5/3 lifting wavelet HD-video de-noising system is proposed with frame rate conversion(FRC) based on a field-programmable gate array(FPGA),which uses a 3-level pipeline paralleled 5/3 lifting wavelet transformation and reconstruction structure,as well as a fast BayesS hrink adaptive threshold filtering module.The proposed system demonstrates de-noising performance,while also balancing system resources and achieving real-time processing.The experiments show that the proposed system's maximum operating frequency(through logic synthesis and layout using Quartus 13.1 software) can reach 178 MHz,based on the Altera Company's Stratix III EP3SE80 series FPGA.The proposed system can also satisfy real-time de-noising requirements of 1920 × 1080 at60 fps HD-video sources,while also significantly improving the peak signal to noise rate of the denoising images.Compared with similar systems,the system has the advantages of high operating frequency,and the ability to support multiple source formats for real-time processing.展开更多
Aiming at shortage of the SPIHT algorithm, an improved image compression algorithm is proposed, in order to overcome the shortcomings of decoding image quality and coding time, LS9/7 lifting wavelet transform is adopt...Aiming at shortage of the SPIHT algorithm, an improved image compression algorithm is proposed, in order to overcome the shortcomings of decoding image quality and coding time, LS9/7 lifting wavelet transform is adopted. According to the characteristics of the human visual system (HVS), the scanning mode and the method to determine the threshold of algorithm are changed to improve the quality of reconstruction image. On the question of repeating scan of SPIHT algorithm, using maximum list thought, greatly reduce the computation and save operating time. The experimental results have proved that the improved algorithm of image decoding time and the quality of reconstruction images are better than the original algorithm , especially in the case of low bit rate.展开更多
Preventive maintenance in the transformer is performed through a dif-ferential relay protection system,and it protects the transformer from internal and external faults.However,the Current Transformer(CT)in the differ...Preventive maintenance in the transformer is performed through a dif-ferential relay protection system,and it protects the transformer from internal and external faults.However,the Current Transformer(CT)in the differential protec-tion system mal-operates during inrush currents.CT saturates due to magnetizing inrush currents and causes false tripping of the differential relays.Moreover,iden-tification of tripping in protection relay either due to inrush current or internal faults needs to be diagnosed.For the above problem,continuous monitoring of transformer breather and CT terminals with thermal camera helps detect the trip-ping in relay due to inrush or internal fault.The transformer’s internal fault leads to high breathing process in the transformer breather,never for inrush currents.During inrush currents,CT temperature is increased.Continuous monitoring of breather and CT of the transformer through thermal imaging and radiometric pix-els detect the causes of CT saturation and differentiates maloperation.Hybrid wavelet threshold image analytics(HWT-IA)based radiometric pixels analysis of the transformer breather and CT after de-noising provides an accurate result of about 95%for identification of the false tripping of differential protection system of transformer.展开更多
This paper presents a wavelet-based hybrid threshold method according to the soft- and hard-threshold functions proposed by Donoho. The wavelet-based hybrid threshold method may help doctors to know more details on th...This paper presents a wavelet-based hybrid threshold method according to the soft- and hard-threshold functions proposed by Donoho. The wavelet-based hybrid threshold method may help doctors to know more details on the liver disease through denoising the ultrasound image of the liver. First of all, an analytical expression for the hybrid threshold function is discussed. The wavelet-based hybrid threshold method is then investigated for ultrasound image of the liver. Finally, we test the influence of this parameter on the proposed method with the real ultrasound image corrupted by speckle noise with different variances. Moreover, we compare the proposed method under the varying parameters with the soft-threshold function and the hard-threshold function. Three metrics, which are correlation coefficient, edge preservation index and structural similarity index, are measured to quantify the denoised results of ultrasound liver image. Experimental results demonstrate the potential of the proposed method for ultrasound liver image denosing.展开更多
基金The National Natural Science Foundation of China under contract No.41271409the National Key Technology Research and Development Program under contract No.2011BAH23B00the National High Technology Research and Development Program(863 Program)of China under contract No.2012AA12A406
文摘Homologous feature point extraction is a key problem in the optical and synthetic aperture radar (SAR) image registration for islands. A new feature point extraction method using a threshold shrink operator and non-subsampled wavelet transform (TSO-NSWT) for optical and SAR image registration was proposed. Moreover, the matching for this proposed feature was different from the traditional feature matching strategies and was performed using a similarity measure computed from neighborhood circles in low-frequency bands. Then, a number of reliably matched couples with even distributions were obtained, which assured the accuracy of the registration. Application of the proposed algorithm to SPOT-5 (multi-spectral) and YG-1 (SAR) images showed that a large number of accurately matched couples could be identified. Additionally, both of the root mean square error (RMSE) patterns of the registration parameters computed based on the TSO-NSWT algorithm and traditional NSWT algorithm were analyzed and compared, which further demonstrated the effectiveness of the proposed algorithm. The algorithm can supply the crucial step for island image registration and island recognition.
文摘For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there are a lot of original information at the edge during image processing, thus, we can get the real image data in terms of the data acquisition. The usage of edge is often in the case of some irregular geometric objects, and we determine the contour of the image by combining with signal transmitted data. At the present stage, there are different algorithms in image edge detection, however, different types of algorithms have divergent disadvantages so It is diffi cult to detect the image changes in a reasonable range. We try to use wavelet transformation in image edge detection, making full use of the wave with the high resolution characteristics, and combining multiple images, in order to improve the accuracy of image edge detection.
基金the Aeronautics Science Foundation of China(20070153005)Astronautics Science Technology Innovation Foundation of China(05C53005)
文摘Aiming at the problem,i.e.infrared images own the characters of bad contrast ratio and fuzzy edges,a method to enhance the contrast of infrared image is given,which is based on stationary wavelet transform.After making stationary wavelet transform to an infrared image,denoising is done by the proposed method of double-threshold shrinkage in detail coefficient matrixes that have high noisy intensity.For the approximation coefficient matrix with low noisy intensity,enhancement is done by the proposed method based on histogram.The enhanced image can be got by wavelet coefficient reconstruction.Furthermore,an evaluation criterion of enhancement performance is introduced.The results show that this algorithm ensures target enhancement and restrains additive Gauss white noise effectively.At the same time,its amount of calculation is small and operation speed is fast.
基金Project supported by the Key Area Research and Development Program of Guangdong Province,China(Grant No.2022B0701180001)the National Natural Science Foundation of China(Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China(Grant Nos.2019B010140002 and 2020B111110002)the Guangdong–Hong Kong–Macao Joint Innovation Field Project(Grant No.2021A0505080006).
文摘In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.
基金Supported by the National Natural Science Foundation of China(No.59775070)
文摘This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of noisy images, the original image can be reconstructed correctly. Different threshold selections and thresholding methods are discussed. A new robust local threshold scheme is proposed. Quantifying the performance of image denoising schemes by using the mean square error, the performance of the robust local threshold scheme is demonstrated and is compared with the universal threshold scheme. The experiment shows that image denoising using the robust local threshold performs better than that using the universal threshold.
文摘VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image.
文摘An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques have been used to analyze brain tumors,including computed tomography(CT)and magnetic reso-nance imaging(MRI).CT provides information about dense tissues,whereas MRI gives information about soft tissues.However,the fusion of CT and MRI images has little effect on enhancing the accuracy of the diagnosis of brain tumors.Therefore,machine learning methods have been adopted to diagnose brain tumors in recent years.This paper intends to develop a novel scheme to detect and classify brain tumors based on fused CT and MRI images.The pro-posed approach starts with preprocessing the images to reduce the noise.Then,fusion rules are applied to get the fused image,and a segmentation algorithm is employed to isolate the tumor region from the background to isolate the tumor region.Finally,a machine learning classifier classified the brain images into benign and malignant tumors.Computing statistical measures evaluate the classi-fication potential of the proposed scheme.Experimental outcomes are provided,and the Enhanced Flower Pollination Algorithm(EFPA)system shows that it out-performs other brain tumor classification methods considered for comparison.
基金Project supported by the National Natural Science Foundation of China (Nos 30700167 and 60725102)the Project of State Key Laboratory of Transducer Technology of China (No SKT0702)+1 种基金the Zhejiang Provincial Natural Science Foundation of China (No Y2080673)the Scientific Research Fund of the Education Department of Zhejiang Province, China (No Y200909323)
文摘Neurochip based on light-addressable potentiometric sensor(LAPS),whose sensing elements are excitable cells,can monitor electrophysiological properties of cultured neuron networks with cellular signals well analyzed.Here we report a kind of neurochip with rat pheochromocytoma(PC12) cells hybrid with LAPS and a method of de-noising signals based on wavelet transform.Cells were cultured on LAPS for several days to form networks,and we then used LAPS system to detect the extracellular potentials with signals de-noised according to decomposition in the time-frequency space.The signal was decomposed into various scales,and coefficients were processed based on the properties of each layer.At last,signal was reconstructed based on the new coefficients.The results show that after de-noising,baseline drift is removed and signal-to-noise ratio is increased.It suggests that the neurochip of PC12 cells coupled to LAPS is stable and suitable for long-term and non-invasive measurement of cell electrophysiological properties with wavelet transform,taking advantage of its time-frequency localization analysis to reduce noise.
文摘Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imaging processing. It could match the images and improve the confidence and spatial resolution of the images. Using two algorithms, double thresholds algorithm and denoising algorithm based on wavelet transform,the fluorescence image and transmission image of a Cell were merged into a composite image. Results and Conclusion The position of fluorescence and the structure of cell can be displyed in the composite image. The signal-to-noise ratio of the exultant image is improved to a large extent. The algorithms are not only useful to investigate the fluorescence and transmission images, but also suitable to observing two or more fluoascent label proes in a single cell.
基金Project(20040533035) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject (60874070) supported by the National Natural Science Foundation of China
文摘To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments.
基金Projects(61376076,61274026,61377024)supported by the National Natural Science Foundation of ChinaProjects(12C0108,13C321)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2013FJ2011,2014FJ2017,2013FJ4232)supported by the Science and Technology Plan Foundation of Hunan Province,China
文摘Image enhancement technology plays a very important role to improve image quality in image processing. By enhancing some information and restraining other information selectively, it can improve image visual effect. The objective of this work is to implement the image enhancement to gray scale images using different techniques. After the fundamental methods of image enhancement processing are demonstrated, image enhancement algorithms based on space and frequency domains are systematically investigated and compared. The advantage and defect of the above-mentioned algorithms are analyzed. The algorithms of wavelet based image enhancement are also deduced and generalized. Wavelet transform modulus maxima(WTMM) is a method for detecting the fractal dimension of a signal, it is well used for image enhancement. The image techniques are compared by using the mean(μ),standard deviation(?), mean square error(MSE) and PSNR(peak signal to noise ratio). A group of experimental results demonstrate that the image enhancement algorithm based on wavelet transform is effective for image de-noising and enhancement. Wavelet transform modulus maxima method is one of the best methods for image enhancement.
基金Supported by the Spark Program of China(No.2013GA780007)Key Scientific Research Project of Guandong Agriculture Industry Business Polytechnic(No.xyzd1604)
文摘In accordance with the application requirements of high definition(HD) video surveillance systems,a real-time 5/3 lifting wavelet HD-video de-noising system is proposed with frame rate conversion(FRC) based on a field-programmable gate array(FPGA),which uses a 3-level pipeline paralleled 5/3 lifting wavelet transformation and reconstruction structure,as well as a fast BayesS hrink adaptive threshold filtering module.The proposed system demonstrates de-noising performance,while also balancing system resources and achieving real-time processing.The experiments show that the proposed system's maximum operating frequency(through logic synthesis and layout using Quartus 13.1 software) can reach 178 MHz,based on the Altera Company's Stratix III EP3SE80 series FPGA.The proposed system can also satisfy real-time de-noising requirements of 1920 × 1080 at60 fps HD-video sources,while also significantly improving the peak signal to noise rate of the denoising images.Compared with similar systems,the system has the advantages of high operating frequency,and the ability to support multiple source formats for real-time processing.
文摘Aiming at shortage of the SPIHT algorithm, an improved image compression algorithm is proposed, in order to overcome the shortcomings of decoding image quality and coding time, LS9/7 lifting wavelet transform is adopted. According to the characteristics of the human visual system (HVS), the scanning mode and the method to determine the threshold of algorithm are changed to improve the quality of reconstruction image. On the question of repeating scan of SPIHT algorithm, using maximum list thought, greatly reduce the computation and save operating time. The experimental results have proved that the improved algorithm of image decoding time and the quality of reconstruction images are better than the original algorithm , especially in the case of low bit rate.
文摘Preventive maintenance in the transformer is performed through a dif-ferential relay protection system,and it protects the transformer from internal and external faults.However,the Current Transformer(CT)in the differential protec-tion system mal-operates during inrush currents.CT saturates due to magnetizing inrush currents and causes false tripping of the differential relays.Moreover,iden-tification of tripping in protection relay either due to inrush current or internal faults needs to be diagnosed.For the above problem,continuous monitoring of transformer breather and CT terminals with thermal camera helps detect the trip-ping in relay due to inrush or internal fault.The transformer’s internal fault leads to high breathing process in the transformer breather,never for inrush currents.During inrush currents,CT temperature is increased.Continuous monitoring of breather and CT of the transformer through thermal imaging and radiometric pix-els detect the causes of CT saturation and differentiates maloperation.Hybrid wavelet threshold image analytics(HWT-IA)based radiometric pixels analysis of the transformer breather and CT after de-noising provides an accurate result of about 95%for identification of the false tripping of differential protection system of transformer.
基金the Fundamental Research Funds for the Central Universities of China(No.YS1404)the Beijing University of Chemical Technology Interdisciplinary Funds for "Visual Media Computing"
文摘This paper presents a wavelet-based hybrid threshold method according to the soft- and hard-threshold functions proposed by Donoho. The wavelet-based hybrid threshold method may help doctors to know more details on the liver disease through denoising the ultrasound image of the liver. First of all, an analytical expression for the hybrid threshold function is discussed. The wavelet-based hybrid threshold method is then investigated for ultrasound image of the liver. Finally, we test the influence of this parameter on the proposed method with the real ultrasound image corrupted by speckle noise with different variances. Moreover, we compare the proposed method under the varying parameters with the soft-threshold function and the hard-threshold function. Three metrics, which are correlation coefficient, edge preservation index and structural similarity index, are measured to quantify the denoised results of ultrasound liver image. Experimental results demonstrate the potential of the proposed method for ultrasound liver image denosing.