In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi...In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.展开更多
This paper presents a novel method utilizing wavelets with particle swarm optimization(PSO)for medical image compression.Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing ima...This paper presents a novel method utilizing wavelets with particle swarm optimization(PSO)for medical image compression.Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding.It transfers images into subband details and approximations using a modified Haar wavelet(MHW),and then applies a threshold.PSO is applied for selecting a particle assigned to the threshold values for the subbands.Nine positions assigned to particles values are used to represent population.Every particle updates its position depending on the global best position(gbest)(for all details subband)and local best position(pbest)(for a subband).The fitness value is developed to terminate PSO when the difference between two local best(pbest)successors is smaller than a prescribe value.The experiments are applied on five different medical image types,i.e.,MRI,CT,and X-ray.Results show that the proposed algorithm can be more preferably to compress medical images than other existing wavelets techniques from peak signal to noise ratio(PSNR)and compression ratio(CR)points of views.展开更多
In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and ...In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and bilateral denoising. First, the wavelet transform is adopted to decompose the image of refuge chamber, of which low frequency component remains unchanged. Then, three high-frequency components are treated by bilateral filtering, and the image is reconstructed. The result shows that the combination of bilateral filtering and wavelet transform for image denoising can better retain the details which are included in the image, while providing better visual effect. This is superior to using either bilateral filtering or wavelet transform alone. It is useful for perfecting emergency refuge system of coal mines.展开更多
Image denoising is the basic problem of image processing. Quaternion wavelet transform is a new kind of multiresolution analysis tools. Image via quaternion wavelet transform, wavelet coefficients both in intrascale a...Image denoising is the basic problem of image processing. Quaternion wavelet transform is a new kind of multiresolution analysis tools. Image via quaternion wavelet transform, wavelet coefficients both in intrascale and in interscale have certain correla- tions. First, according to the correlation of quaternion wavelet coefficients in interscale, non-Ganssian distribution model is used to model its correlations, and the coefficients are divided into important and unimportance coefficients. Then we use the non-Gaussian distribution model to model the important coefficients and its adjacent coefficients, and utilize the MAP method estimate original image wavelet coefficients from noisy coefficients, so as to achieve the purpose of denoising. Experimental results show that our al- gorithm outperforms the other classical algorithms in peak signal-to-noise ratio and visual quality.展开更多
Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum...Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum of the signal is different from that of noise. This difference is used to alleviate the noise produced by SAR image.The method to denoise SAR image using the process based on wavelet-fractai analysis is discussed in detail. Essentially, the present method focuses on adjusting the Hoelder exponent α of multifractal spectrum. After simulation, α should be adjusted to 1.72-1.73. The more the value of α exceeds 1.73, the less distinctive the edges of SAR image become. According to the authors denoising is optimal at α=1.72-1.73. In other words, when α =1.72-1.73, a smooth and denoised SAR image is produced.展开更多
By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the ...By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the different levels of importance accorded the frequency sublevel band wavelet coefficients. Higher frequency sublevel bands would lead to larger initial errors. As a result, the sizes of sublevel blocks and super blocks would be changed according to the initial errors. The matching sizes between sublevel blocks and super blocks would be changed according to the permitted errors and compression rates. Systematic analyses are performed and the experimental results demonstrate that the proposed method provides a satisfactory performance with a clearly increasing rate of compression and speed of encoding without reducing SNR and the quality of decoded images. Simulation results show that our method is superior to the traditional wavelet tree based methods of fractal image compression.展开更多
The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear...The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear morphological predictor follows the update adaptive lifting to result in fewer large wavelet coefficients near edges for reducing coding. The nonlinear adaptive wavelet transforms can also allow perfect reconstruction without any overhead cost. Experiment results are given to show lower entropy of the adaptive transformed images than those of the non-adaptive case and great applicable potentiality in lossless image compresslon.展开更多
This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of nois...This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of noisy images, the original image can be reconstructed correctly. Different threshold selections and thresholding methods are discussed. A new robust local threshold scheme is proposed. Quantifying the performance of image denoising schemes by using the mean square error, the performance of the robust local threshold scheme is demonstrated and is compared with the universal threshold scheme. The experiment shows that image denoising using the robust local threshold performs better than that using the universal threshold.展开更多
A new method for image denoising is proposed. By analyzing image's statistical properties in wavelet domain, it is shown that the natural image has a strong and spatial variable covariance structure relationship i...A new method for image denoising is proposed. By analyzing image's statistical properties in wavelet domain, it is shown that the natural image has a strong and spatial variable covariance structure relationship in local space of sub-band. A non-direct estimation method is suggested to make an adaptive estimate of spatial variable covariance by estimating the correlation coefficient and variance of subband image separately. It can be used to estimate adaptive filtering of subband image. The experiment shows that this method can improve the image's SNR, and has strong ability to preserve edges.展开更多
When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We us...When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We use a method called symmetric extension to solve the problem. We only consider the case of the two-band filter banks, and the results can be applied to M-band filter banks. There are only two types of symmetric extension in analysis phrase, namely the whole-sample symmetry (WS), the half-sample symmetry (HS), while there are four types of symmetric extension in synthesis phrase, namely the WS, HS, the whole-sample anti-symmetry (WA), and the half-sample anti-symmetry (HA) respectively. We can select the exact type according to the image length and the filter length, and we will show how to do these. The image can be perfectly reconstructed without any edge effects in this way. Finally, simulation results are reported. Key words edge effect - image compression - wavelet - biorthogonal bases - symmetric extension CLC number TP 37 Foundation item: Supported by the National 863 Project (20021111901010)Biography: Yu Sheng-sheng (1944-), male, Professor, research direction: multimedia information processing, SAN.展开更多
The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins includ...The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.展开更多
Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation ...Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented. Firstly, we used directional median filter to effectively reduce impulse noise in the spatial domain, which is the main cause of noise in mine. Secondly, we used a Wiener filtration method to mainly reduce the Gaussian noise, and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain. This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits, and effectively reduce impulse noise and Gaussian noise in a coal mine, while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment.展开更多
Deviation is essential to classic soft threshold denoising in wavelet domain. Texture features ofnoised image denoised by wavelet transform were weakened. Gibbs effect is distinct at edges of image.Image blurs compari...Deviation is essential to classic soft threshold denoising in wavelet domain. Texture features ofnoised image denoised by wavelet transform were weakened. Gibbs effect is distinct at edges of image.Image blurs comparing with original noised image. To solve the questions, a blind denoising method basedon single-wavelet transform and multiwavelets transform was proposed. The method doesn’t depend onsize of image and deviation to determine threshold of wavelet coefficients, which is different from classicalsoft-threshold denoising in wavelet domain. Moreover, the method is good for many types of noise. Gibbseffect disappeared with this method, edges of image are preserved well, and noise is smoothed andrestrained effectively.展开更多
In this paper, the second generation wavelet transform is applied to image lossless coding, according to its characteristic of reversible integer wavelet transform. The second generation wavelet transform can provide ...In this paper, the second generation wavelet transform is applied to image lossless coding, according to its characteristic of reversible integer wavelet transform. The second generation wavelet transform can provide higher compression ratio than Huffman coding while it reconstructs image without loss compared with the first generation wavelet transform. The experimental results show that the se cond generation wavelet transform can obtain excellent performance in medical image compression coding.展开更多
In Order to reduce the noise in the images and the physical storage, the wavelet-based image compression technique was applied to PIV processing in this paper. To study the effect of the wavelet bases, the standard PI...In Order to reduce the noise in the images and the physical storage, the wavelet-based image compression technique was applied to PIV processing in this paper. To study the effect of the wavelet bases, the standard PIV images were compressed by some known wavelet families, Daubechies, Coifman and Baylkin families with various compression ratios. It was found that a higher order wavelet base provided good compression performance for compressing PIV images. The error analysis of velocity field obtained indicated that the high compression ratio, even up to 64.1, can be realized without losing significant flow information in PIV processing. The wavelet compression technique of PIV was applied to the experimental images of jet flow and showed excellent performance. A reduced number of erroneous vectors can be realized by varying compression ratio. It can say that the wavelet image compression technique is very effective in PIV system.展开更多
An adaptive image denosing technique was proposed to achieve the tradeoff between details retain and noises removal. In order to achieve this objective, the contourlet transform was introduced and a new threshold meth...An adaptive image denosing technique was proposed to achieve the tradeoff between details retain and noises removal. In order to achieve this objective, the contourlet transform was introduced and a new threshold method, namely CWinShrink, is presented. It shrinks the contourlet coefficients with adaptive shrinkage factors. The shrinkage factors were calculated with reference to the sum of squares of the contourlet coefficients within the neighborhood window. This approach achieves enhanced results for images those are corrupted with additive Gaussian noise. In numerical comparisons with various methods, for a set of noisy images (the PSNR range fi'om 10.86dB to 26.91dB) , the presented method outperforms VisuShrink and Wiener filter in terms of the PSNR. Experiments also show that this method not only keeps the details of image but also yields denoised images with better visual quality.展开更多
When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (...When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (R-L) iteration method was proposed to incorporated with Bayesian least square-Gaussian scale mixture model (BLS-GSM) wavelet denoising for the simulated image. Optimal number of R-L iterations was gotten by a large number of tests. The results show that compared with Wiener method and median filter denoising, this method is better in restraining background noise, the correlation coefficient Rsr between the reconstructed and the real images is larger, and the reconstruction result is better.展开更多
To utilize residual redundancy to reduce the error induced by fading channels and decrease the complexity of the field model to describe the probability structure for residual redundancy, a simplified statistical mode...To utilize residual redundancy to reduce the error induced by fading channels and decrease the complexity of the field model to describe the probability structure for residual redundancy, a simplified statistical model for residual redundancy and a low complexity joint source-channel decoding(JSCD) algorithm are proposed. The complicated residual redundancy in wavelet compressed images is decomposed into several independent 1-D probability check equations composed of Markov chains and it is regarded as a natural channel code with a structure similar to the low density parity check (LDPC) code. A parallel sum-product (SP) and iterative JSCD algorithm is proposed. Simulation results show that the proposed JSCD algorithm can make full use of residual redundancy in different directions to correct errors and improve the peak signal noise ratio (PSNR) of the reconstructed image and reduce the complexity and delay of JSCD. The performance of JSCD is more robust than the traditional separated encoding system with arithmetic coding in the same data rate.展开更多
We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous...We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous experiments were done on typical images to calculate (using Matlab) the entropy before and after wavelet transform. It was verified that, to obtain minimal entropy, a three-layer decomposition should be adopted rather than higher orders. The result achieved by using biorthogonal wavelet decomposition is better than that of the orthogonal wavelet decomposition. The results are not directly proportional to the vanishing moment, however.展开更多
Remote sensing images are hard to achieve high compression ratio because of their rich texture. By analyzing the influence of wavelet properties on image compression, this paper proposes wavelet construction rules and...Remote sensing images are hard to achieve high compression ratio because of their rich texture. By analyzing the influence of wavelet properties on image compression, this paper proposes wavelet construction rules and builds a new biorthogonal wavelet construction model with parameters. The model parameters are optimized by using genetic algorithm and adopting energy compaction as the optimization object function. In addition, in order to resolve the computation complexity problem of online construction, according to the image classification rule proposed in this paper we construct wavelets for different classes of images and implement the fast adaptive wavelet selection algorithm (FAWS). Experimental results show wavelet bases of FAWS gain better compression performance than Daubechies9/7.展开更多
基金Project(2016JJ4074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(14C0920)supported by the Hunan Provincial Education Department,ChinaProject(61771191)supported by the National Natural Science Foundation of China
文摘In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.
基金funded by the University of Jeddah,Saudi Arabia,under Grant No.UJ-20-043-DR。
文摘This paper presents a novel method utilizing wavelets with particle swarm optimization(PSO)for medical image compression.Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding.It transfers images into subband details and approximations using a modified Haar wavelet(MHW),and then applies a threshold.PSO is applied for selecting a particle assigned to the threshold values for the subbands.Nine positions assigned to particles values are used to represent population.Every particle updates its position depending on the global best position(gbest)(for all details subband)and local best position(pbest)(for a subband).The fitness value is developed to terminate PSO when the difference between two local best(pbest)successors is smaller than a prescribe value.The experiments are applied on five different medical image types,i.e.,MRI,CT,and X-ray.Results show that the proposed algorithm can be more preferably to compress medical images than other existing wavelets techniques from peak signal to noise ratio(PSNR)and compression ratio(CR)points of views.
基金the Scientific Research Project of Zhejiang Education Department of China (No. Y20108569)the Soft Science Project of Ningbo of China (No. 2011A1058)the Soft Science of Zhejiang Association for Science and Technology of China (No. KX12E-10)
文摘In order to preferably identify infrared image of refuge chamber, reduce image noises of refuge chamber and retain more image details, we propose the method of combining two-dimensional discrete wavelet transform and bilateral denoising. First, the wavelet transform is adopted to decompose the image of refuge chamber, of which low frequency component remains unchanged. Then, three high-frequency components are treated by bilateral filtering, and the image is reconstructed. The result shows that the combination of bilateral filtering and wavelet transform for image denoising can better retain the details which are included in the image, while providing better visual effect. This is superior to using either bilateral filtering or wavelet transform alone. It is useful for perfecting emergency refuge system of coal mines.
基金Supported by Natural Science Foundation of Anhui (No.11040606M06)
文摘Image denoising is the basic problem of image processing. Quaternion wavelet transform is a new kind of multiresolution analysis tools. Image via quaternion wavelet transform, wavelet coefficients both in intrascale and in interscale have certain correla- tions. First, according to the correlation of quaternion wavelet coefficients in interscale, non-Ganssian distribution model is used to model its correlations, and the coefficients are divided into important and unimportance coefficients. Then we use the non-Gaussian distribution model to model the important coefficients and its adjacent coefficients, and utilize the MAP method estimate original image wavelet coefficients from noisy coefficients, so as to achieve the purpose of denoising. Experimental results show that our al- gorithm outperforms the other classical algorithms in peak signal-to-noise ratio and visual quality.
文摘Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum of the signal is different from that of noise. This difference is used to alleviate the noise produced by SAR image.The method to denoise SAR image using the process based on wavelet-fractai analysis is discussed in detail. Essentially, the present method focuses on adjusting the Hoelder exponent α of multifractal spectrum. After simulation, α should be adjusted to 1.72-1.73. The more the value of α exceeds 1.73, the less distinctive the edges of SAR image become. According to the authors denoising is optimal at α=1.72-1.73. In other words, when α =1.72-1.73, a smooth and denoised SAR image is produced.
基金Project 60571049 supported by the National Natural Science Foundation of China
文摘By investigating the limitation of existing wavelet tree based image compression methods, we propose a novel wavelet fractal image compression method in this paper. Briefly, the initial errors are appointed given the different levels of importance accorded the frequency sublevel band wavelet coefficients. Higher frequency sublevel bands would lead to larger initial errors. As a result, the sizes of sublevel blocks and super blocks would be changed according to the initial errors. The matching sizes between sublevel blocks and super blocks would be changed according to the permitted errors and compression rates. Systematic analyses are performed and the experimental results demonstrate that the proposed method provides a satisfactory performance with a clearly increasing rate of compression and speed of encoding without reducing SNR and the quality of decoded images. Simulation results show that our method is superior to the traditional wavelet tree based methods of fractal image compression.
基金Supported by the National Natural Science Foundation of China (69983005)
文摘The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear morphological predictor follows the update adaptive lifting to result in fewer large wavelet coefficients near edges for reducing coding. The nonlinear adaptive wavelet transforms can also allow perfect reconstruction without any overhead cost. Experiment results are given to show lower entropy of the adaptive transformed images than those of the non-adaptive case and great applicable potentiality in lossless image compresslon.
基金Supported by the National Natural Science Foundation of China(No.59775070)
文摘This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of noisy images, the original image can be reconstructed correctly. Different threshold selections and thresholding methods are discussed. A new robust local threshold scheme is proposed. Quantifying the performance of image denoising schemes by using the mean square error, the performance of the robust local threshold scheme is demonstrated and is compared with the universal threshold scheme. The experiment shows that image denoising using the robust local threshold performs better than that using the universal threshold.
文摘A new method for image denoising is proposed. By analyzing image's statistical properties in wavelet domain, it is shown that the natural image has a strong and spatial variable covariance structure relationship in local space of sub-band. A non-direct estimation method is suggested to make an adaptive estimate of spatial variable covariance by estimating the correlation coefficient and variance of subband image separately. It can be used to estimate adaptive filtering of subband image. The experiment shows that this method can improve the image's SNR, and has strong ability to preserve edges.
文摘When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We use a method called symmetric extension to solve the problem. We only consider the case of the two-band filter banks, and the results can be applied to M-band filter banks. There are only two types of symmetric extension in analysis phrase, namely the whole-sample symmetry (WS), the half-sample symmetry (HS), while there are four types of symmetric extension in synthesis phrase, namely the WS, HS, the whole-sample anti-symmetry (WA), and the half-sample anti-symmetry (HA) respectively. We can select the exact type according to the image length and the filter length, and we will show how to do these. The image can be perfectly reconstructed without any edge effects in this way. Finally, simulation results are reported. Key words edge effect - image compression - wavelet - biorthogonal bases - symmetric extension CLC number TP 37 Foundation item: Supported by the National 863 Project (20021111901010)Biography: Yu Sheng-sheng (1944-), male, Professor, research direction: multimedia information processing, SAN.
文摘The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology.
基金provided by the Heilongjiang Provincial Department of Education Planning Project (No.GBC1212076)the Central University Research Project (No.00-800015Q7)
文摘Based on low illumination and a large number of mixed noises contained in coal mine, denoising with one method usually cannot achieve good results, so a multi-level image denoising method based on wavelet correlation relevant inter-scale is presented. Firstly, we used directional median filter to effectively reduce impulse noise in the spatial domain, which is the main cause of noise in mine. Secondly, we used a Wiener filtration method to mainly reduce the Gaussian noise, and then finally used a multi-wavelet transform to minimize the remaining noise of low-light images in the transform domain. This multi-level image noise reduction method combines spatial and transform domain denoising to enhance benefits, and effectively reduce impulse noise and Gaussian noise in a coal mine, while retaining good detailed image characteristics of the underground for improving quality of images with mixing noise and effective low-light environment.
文摘Deviation is essential to classic soft threshold denoising in wavelet domain. Texture features ofnoised image denoised by wavelet transform were weakened. Gibbs effect is distinct at edges of image.Image blurs comparing with original noised image. To solve the questions, a blind denoising method basedon single-wavelet transform and multiwavelets transform was proposed. The method doesn’t depend onsize of image and deviation to determine threshold of wavelet coefficients, which is different from classicalsoft-threshold denoising in wavelet domain. Moreover, the method is good for many types of noise. Gibbseffect disappeared with this method, edges of image are preserved well, and noise is smoothed andrestrained effectively.
基金Supported by the National Natural Science Foundation of China!( 6 9875 0 0 9)
文摘In this paper, the second generation wavelet transform is applied to image lossless coding, according to its characteristic of reversible integer wavelet transform. The second generation wavelet transform can provide higher compression ratio than Huffman coding while it reconstructs image without loss compared with the first generation wavelet transform. The experimental results show that the se cond generation wavelet transform can obtain excellent performance in medical image compression coding.
文摘In Order to reduce the noise in the images and the physical storage, the wavelet-based image compression technique was applied to PIV processing in this paper. To study the effect of the wavelet bases, the standard PIV images were compressed by some known wavelet families, Daubechies, Coifman and Baylkin families with various compression ratios. It was found that a higher order wavelet base provided good compression performance for compressing PIV images. The error analysis of velocity field obtained indicated that the high compression ratio, even up to 64.1, can be realized without losing significant flow information in PIV processing. The wavelet compression technique of PIV was applied to the experimental images of jet flow and showed excellent performance. A reduced number of erroneous vectors can be realized by varying compression ratio. It can say that the wavelet image compression technique is very effective in PIV system.
基金Sponsored by Key Lab of Optoelectronic Technology &System,Department of Education, China(Grant No.200373 -1 -2).
文摘An adaptive image denosing technique was proposed to achieve the tradeoff between details retain and noises removal. In order to achieve this objective, the contourlet transform was introduced and a new threshold method, namely CWinShrink, is presented. It shrinks the contourlet coefficients with adaptive shrinkage factors. The shrinkage factors were calculated with reference to the sum of squares of the contourlet coefficients within the neighborhood window. This approach achieves enhanced results for images those are corrupted with additive Gaussian noise. In numerical comparisons with various methods, for a set of noisy images (the PSNR range fi'om 10.86dB to 26.91dB) , the presented method outperforms VisuShrink and Wiener filter in terms of the PSNR. Experiments also show that this method not only keeps the details of image but also yields denoised images with better visual quality.
基金supported by National Natural Science Foundation of China(No.11105106)
文摘When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (R-L) iteration method was proposed to incorporated with Bayesian least square-Gaussian scale mixture model (BLS-GSM) wavelet denoising for the simulated image. Optimal number of R-L iterations was gotten by a large number of tests. The results show that compared with Wiener method and median filter denoising, this method is better in restraining background noise, the correlation coefficient Rsr between the reconstructed and the real images is larger, and the reconstruction result is better.
文摘To utilize residual redundancy to reduce the error induced by fading channels and decrease the complexity of the field model to describe the probability structure for residual redundancy, a simplified statistical model for residual redundancy and a low complexity joint source-channel decoding(JSCD) algorithm are proposed. The complicated residual redundancy in wavelet compressed images is decomposed into several independent 1-D probability check equations composed of Markov chains and it is regarded as a natural channel code with a structure similar to the low density parity check (LDPC) code. A parallel sum-product (SP) and iterative JSCD algorithm is proposed. Simulation results show that the proposed JSCD algorithm can make full use of residual redundancy in different directions to correct errors and improve the peak signal noise ratio (PSNR) of the reconstructed image and reduce the complexity and delay of JSCD. The performance of JSCD is more robust than the traditional separated encoding system with arithmetic coding in the same data rate.
基金the Natural Science Foundation of China (No. 60472037).
文摘We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous experiments were done on typical images to calculate (using Matlab) the entropy before and after wavelet transform. It was verified that, to obtain minimal entropy, a three-layer decomposition should be adopted rather than higher orders. The result achieved by using biorthogonal wavelet decomposition is better than that of the orthogonal wavelet decomposition. The results are not directly proportional to the vanishing moment, however.
基金Supported bY the National Natural Science Foundation of China under Grant No.60573150National Defense Basic Research Foundation,the Program for New Century Excellent Talents in Universities and ERIPKU.
文摘Remote sensing images are hard to achieve high compression ratio because of their rich texture. By analyzing the influence of wavelet properties on image compression, this paper proposes wavelet construction rules and builds a new biorthogonal wavelet construction model with parameters. The model parameters are optimized by using genetic algorithm and adopting energy compaction as the optimization object function. In addition, in order to resolve the computation complexity problem of online construction, according to the image classification rule proposed in this paper we construct wavelets for different classes of images and implement the fast adaptive wavelet selection algorithm (FAWS). Experimental results show wavelet bases of FAWS gain better compression performance than Daubechies9/7.