期刊文献+
共找到5,010篇文章
< 1 2 250 >
每页显示 20 50 100
基于FTU的配电网单相接地故障定位与恢复方法 被引量:3
1
作者 彭军林 石勇 +2 位作者 于哲 曾先锋 笃峻 《电器与能效管理技术》 2024年第2期72-78,共7页
配电网发生最多的故障是接地故障。针对准确地检测隔离接地故障线路并尽快恢复供电,提出基于配电开关监控终端(FTU)的配电网单相接地故障定位与恢复方法。利用配电网各节点FTU的小波包变换暂态选线及相电流暂态特征选线技术,结合故障路... 配电网发生最多的故障是接地故障。针对准确地检测隔离接地故障线路并尽快恢复供电,提出基于配电开关监控终端(FTU)的配电网单相接地故障定位与恢复方法。利用配电网各节点FTU的小波包变换暂态选线及相电流暂态特征选线技术,结合故障路径自适应处理控制策略,配合首开关延时合闸逻辑,从而实现多分支配电网故障定位与自动隔离恢复。所提方法能够快速选出故障线路并隔离故障区段,有利于故障快速消除,提高系统运行的安全性、可靠性。 展开更多
关键词 单相接地故障 小波包 故障定位 自动隔离恢复 配电开关监控终端
下载PDF
基于增强多头注意力机制的Optuna-BiGRU测井岩性识别 被引量:1
2
作者 王婷婷 王振豪 +1 位作者 李方 赵万春 《地球科学与环境学报》 CAS 北大核心 2024年第1期127-142,共16页
测井岩性识别是油气勘探开发中至关重要的内容。针对现有算法模型在处理测井曲线数据时,无法有效捕获曲线内部深层关联和深度方向关系、拟合能力较弱、难以准确提取关键特征、噪声干扰以及模型超参数调优过程复杂困难等问题,提出了一种... 测井岩性识别是油气勘探开发中至关重要的内容。针对现有算法模型在处理测井曲线数据时,无法有效捕获曲线内部深层关联和深度方向关系、拟合能力较弱、难以准确提取关键特征、噪声干扰以及模型超参数调优过程复杂困难等问题,提出了一种通过Optuna超参数优化双向门循环单元(Optuna-BiGRU)结合增强多头注意力机制(EMHA)的测井岩性识别模型——Optuna-BiGRU-EMHA模型。该模型引入残差机制和层归一化以改进多头注意力机制模块,并结合双向门循环单元(BiGRU)解决了处理测井数据时的问题,同时使用Optuna超参数优化框架和小波包自适应阈值方法分别解决了超参数调优和噪声干扰问题。首先通过交会图分析和敏感性箱线图分析选取自然伽马、深感应电阻率、中子-密度孔隙度、平均中子-密度孔隙度和岩性密度5个特征参数的测井数据,通过小波包自适应阈值方法对数据进行去噪,并将测井数据分割成数据块,然后利用Optuna框架优化BiGRU-EMHA模型超参数,最后通过实验对比K-近邻算法(KNN)、随机森林(RF)、极端梯度提升算法(XGBoost)、长短期记忆(LSTM)神经网络、BiGRU、双向长短期记忆(BiLSTM)神经网络、BiGRU-MHA、Optuna-BiGRU-EMHA等8种模型在测井岩性识别中的精度。结果表明:Optuna-BiGRU-EMHA模型识别准确率达到80%,相对于传统机器学习模型和深度学习模型,综合岩性识别准确率分别提高15.94%~23.14%和3.93%~15.94%,该模型为常规测井岩性识别提供了坚实的理论支持。 展开更多
关键词 岩性识别 深度学习 BiGRU 增强多头注意力机制 小波包自适应阈值 超参数优化
下载PDF
一种适用于混合双极直流输电的纵联方向保护方法 被引量:1
3
作者 高淑萍 李元泽 +3 位作者 宋国兵 左俊杰 吕宇星 沈渠旺 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期33-44,共12页
直流输电线路通常是以大电感和直流滤波器作为边界,故障行波在边界发生折射和反射时,其行波能量也会因为电感和滤波器的存在而被吸收,导致区内、外高频行波能量产生差异.当故障发生为正方向故障时,其高频前行波能量小于高频反行波能量;... 直流输电线路通常是以大电感和直流滤波器作为边界,故障行波在边界发生折射和反射时,其行波能量也会因为电感和滤波器的存在而被吸收,导致区内、外高频行波能量产生差异.当故障发生为正方向故障时,其高频前行波能量小于高频反行波能量;当故障发生为反方向故障时,其高频前行波能量大于高频反行波能量.由此特征提出了一种基于前、反行波高频能量差异的纵联方向保护,该保护采用小波包变换提取行波的高频能量,利用前行波与反行波在区内故障和区外故障时的高频能量差异判别故障.仿真结果表明,该保护能快速准确地识别故障,并且不受故障类型、过渡电阻以及故障发生位置距离和噪声的影响,具有一定的实用性. 展开更多
关键词 行波保护 混合直流输电 高频行波能量 小波包变换 纵联方向保护
下载PDF
基于小波包分解与CEEMDAN能量熵的水电机组振动信号特征提取 被引量:2
4
作者 王淑青 罗平章 +2 位作者 胡文庆 柯洋洋 张家豪 《水电能源科学》 北大核心 2024年第6期198-202,216,共6页
针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有... 针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有模态函数(IMF)并计算其能量熵,由此构建特征向量集,最后将其输入到海洋捕食者优化支持向量机算法(MPA-SVM)进行模式识别。基于模拟信号、实测信号验证所提特征提取方法的有效性,并与其他方法作对比。结果表明,基于小波包分解与CEEMDAN能量熵的特征提取方法能准确提取特征,有效区分机组不同状态,为工程领域提供了应用价值。 展开更多
关键词 水电机组 振动信号 小波包分解 自适应噪声完备经验模态分解 能量熵 特征提取
下载PDF
参数优化VMD结合改进小波包阈值的去噪方法 被引量:1
5
作者 张晓莉 黄嘉谞 《噪声与振动控制》 CSCD 北大核心 2024年第5期128-132,共5页
针对轴承信号故障特征容易被噪声淹没的问题,提出一种参数优化变分模态分解结合改进小波包阈值的去噪方法。首先,通过变分模态分解(Variational Mode Decomposition,VMD)结合改进粒子群算法(Improve Particle Swarm Optimization,IPSO)... 针对轴承信号故障特征容易被噪声淹没的问题,提出一种参数优化变分模态分解结合改进小波包阈值的去噪方法。首先,通过变分模态分解(Variational Mode Decomposition,VMD)结合改进粒子群算法(Improve Particle Swarm Optimization,IPSO)将含噪信号分解为若干本征模态分量(Intrinsic Mode Function,IMF)。以最大相关系数-相关峭度为准则,把IMF分为高值分量(High-value Intrinsic Mode Function,HIMF)和低值分量(Low-value Intrinsic Mode Function,LIMF)。再对LIMF进行改进小波包(Improved Wavelet Packet,IWP)阈值去噪。最后对重构信号进行包络解调,提取轴承故障特征频率,完成故障诊断。实验结果表明,该方法不仅能够避免“过扼杀”现象,并且可以得到信噪比更高的去噪信号。 展开更多
关键词 振动与波 变分模态分解 小波包阈值去噪 相关峭度 相关系数 轴承
下载PDF
基于BA-MKELM的微电网故障识别与定位 被引量:1
6
作者 吴忠强 卢雪琴 《计量学报》 CSCD 北大核心 2024年第2期253-260,共8页
提出一种基于贝叶斯算法优化多核极限学习机的微电网故障识别和定位方法。针对极限学习机输入参数和隐含层节点数随机选取导致回归能力不足的问题,引入核函数,将多项式与高斯径向基核函数加权组合构成多核极限学习机建立故障识别与定位... 提出一种基于贝叶斯算法优化多核极限学习机的微电网故障识别和定位方法。针对极限学习机输入参数和隐含层节点数随机选取导致回归能力不足的问题,引入核函数,将多项式与高斯径向基核函数加权组合构成多核极限学习机建立故障识别与定位模型,并采用贝叶斯算法对多核极限学习机相关参数进行优化,进一步提高模型的逼近能力。为了验证所提模型的故障识别与定位性能,选用极限学习机和多核极限学习机分别建立故障诊断模型进行比较分析。实验结果表明,所提方法能够高性能地识别和定位微电网中任何类型的故障,识别和定位精度更高。 展开更多
关键词 电学计量 微电网线路 故障识别和定位 贝叶斯算法 多核极限学习机 小波包分解
下载PDF
金刚石滚轮轮廓圆度误差在线判别
7
作者 赵华东 何鸿辉 +2 位作者 朱振伟 周帅康 刘畅 《金刚石与磨料磨具工程》 CAS 北大核心 2024年第4期518-527,共10页
金刚石滚轮形面的修形技术是制造金刚石滚轮的关键技术之一,常采用金刚石砂轮磨削法对其进行精密修形,修形后的轮廓圆度误差是考量滚轮修形合格与否的重要指标。目前的轮廓圆度检测方法是人工停机取下滚轮并放置于轮廓仪上进行,极大地... 金刚石滚轮形面的修形技术是制造金刚石滚轮的关键技术之一,常采用金刚石砂轮磨削法对其进行精密修形,修形后的轮廓圆度误差是考量滚轮修形合格与否的重要指标。目前的轮廓圆度检测方法是人工停机取下滚轮并放置于轮廓仪上进行,极大地增加了滚轮制作的时间和成本。为此,对在五轴加工机床上的金刚石滚轮,沿其轮廓面横向磨削修形时产生的振动信号,提出基于小波包系数和随机森林的在线检测方法并对其轮廓修形状态进行识别,在修形进行状态时的识别准确率为93.3%,具有实际应用价值。 展开更多
关键词 金刚石滚轮 振动信号 小波包系数 在线识别 随机森林
下载PDF
基于双滑模的飞机燃油油量传感器故障监测方法
8
作者 曲鸣飞 张鑫 于鑫 《传感技术学报》 CAS CSCD 北大核心 2024年第11期1952-1957,共6页
飞机燃油油量传感器故障监测由于输出信号的不稳定性,导致故障正确识别率低、残差监测值与标准残差间误差大,提出基于双滑模的飞机燃油油量传感器故障监测方法。以故障产生原因分析结果为基础,引入双滑膜,利用等效输出误差注入原理建立... 飞机燃油油量传感器故障监测由于输出信号的不稳定性,导致故障正确识别率低、残差监测值与标准残差间误差大,提出基于双滑模的飞机燃油油量传感器故障监测方法。以故障产生原因分析结果为基础,引入双滑膜,利用等效输出误差注入原理建立双滑膜观测器,结合李雅普诺夫矩阵关系优化双滑膜观测器测量矩阵,采集故障信息;通过小波包分解法分解采集的信息,提取特征;引入核主成分分析法,建立标准主成分信息模型,利用采集信息在主成分模型上的投影,对比传感器信息与核主成分信息的偏移,实现飞机燃油油量传感器故障监测。仿真结果表明,所提方法的故障正确识别率为100%,且残差监测值与标准残差间最大仅存在0.02的误差,该方法能够有效监测飞机燃油油量传感器故障。 展开更多
关键词 传感器 故障监测 滑膜观测器 李雅普诺夫矩阵 小波包分解法 核主成分分析法
下载PDF
小波包和1D CNN结合的刀具磨损状态识别
9
作者 杨斌 樊志刚 +1 位作者 王建国 刘文婧 《机械设计与制造》 北大核心 2024年第9期228-232,237,共6页
为监测机床切削加工过程中刀具的非线性磨损变化,提出了一种基于小波包分解和一维卷积神经网络(1D CNN)的刀具磨损状态识别方法。采集机床主轴振动数据作为监测信号,采用经信噪比定量分析后的小波包进行预处理,然后选取小波包分解后各... 为监测机床切削加工过程中刀具的非线性磨损变化,提出了一种基于小波包分解和一维卷积神经网络(1D CNN)的刀具磨损状态识别方法。采集机床主轴振动数据作为监测信号,采用经信噪比定量分析后的小波包进行预处理,然后选取小波包分解后各频带的能量特征作为1D CNN的输入,实现了对刀具磨损状态的有效识别。实验表明,该模型能够实现刀具磨损状态的准确预测,相比于BP网络、能量频谱图-Alexnet和Lstm网络模型,刀具磨损状态识别率最优,平均准确率达到98.262%。 展开更多
关键词 刀具磨损 振动信号 小波包分解 卷积神经网络
下载PDF
联合小波-频域变换的自适应能量检测
10
作者 何继爱 李志鑫 +1 位作者 王婵飞 张晓霖 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第5期90-98,共9页
针对传统能量检测方法在频谱感知领域中极易受低信噪比环境干扰,忽视可用频谱的定位亦会影响频谱状态的判别结果,提出了一种联合小波-频域变换的自适应能量检测方法,旨在提高能量检测的噪声灵敏度和判别精确度。通过离散小波包变换对信... 针对传统能量检测方法在频谱感知领域中极易受低信噪比环境干扰,忽视可用频谱的定位亦会影响频谱状态的判别结果,提出了一种联合小波-频域变换的自适应能量检测方法,旨在提高能量检测的噪声灵敏度和判别精确度。通过离散小波包变换对信号进行分解并计算子带能量;结合能量范数降低自适应阈值的计算复杂度,以便与子带能量比较;采用快速傅里叶变换定位可用频谱范围。对该方法进行模拟仿真,探究自适应阈值与不同性能参数之间的变化关系。仿真结果表明,该方法具有良好的环境适配性与系统稳定性,且在不同信噪比环境下的检测误差更小。此外,对子带信号进行频域分析以实现归一化频率范围的重新排序,进一步提高了频谱感知的准确度。 展开更多
关键词 认知无线电 频谱感知 能量检测 离散小波包变换 自适应阈值
下载PDF
基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别
11
作者 赵东 马荣宇 +2 位作者 于立川 赵健 刘嘉辉 《北京林业大学学报》 CAS CSCD 北大核心 2024年第3期123-131,共9页
【目的】细观损伤是承载木材断裂的主要原因之一。木材的多孔层状结构使其损伤过程变得复杂,针对单一信号处理方法较难充分挖掘木材断裂声发射信号中的细观损伤信息,造成识别信息不充分、不完备的问题。本研究提出通过经验模态分解(EMD... 【目的】细观损伤是承载木材断裂的主要原因之一。木材的多孔层状结构使其损伤过程变得复杂,针对单一信号处理方法较难充分挖掘木材断裂声发射信号中的细观损伤信息,造成识别信息不充分、不完备的问题。本研究提出通过经验模态分解(EMD)和小波包能量熵结合的信号处理方法,通过声发射无损检测手段,识别杉木加载过程中的细观损伤类型。【方法】以杉木为研究对象,进行单轴压缩、双悬臂梁和顺纹拉伸3种单一损伤试验,并对其进行加载过程中声发射信号的采集、监测与分析。通过小波包阈值法消除损伤试验中采集的声发射信号噪声,经由EMD和相关系数计算,分离出最能体现杉木细观损伤特征的本征模态(IMF)分量,并对IMF分量进行基于傅里叶变换的峰值频率分析和小波包能量熵分析,提取杉木细观损伤的特征。【结果】(1)EMD和小波包能量熵结合的信号处理方法能够判断杉木加载过程中声发射信号对应的细观损伤类型与构成。(2)杉木不同细观损伤类型的声发射信号对应不同的小波包能量熵区间:胞壁屈曲与塌溃(0.69~0.99)、层间开裂(1.57~1.78)、纤维束断裂(1.92~2.27)。(3)宏观断口观察和电镜显微分析验证了该方法的准确性。【结论】经验模态分解–小波包能量熵法避免了声发射信号模态堆叠的影响,并解决了木材细观损伤复杂且难以识别的问题,为杉木木材断裂的早期诊断方法提供了理论支撑。 展开更多
关键词 木材细观损伤识别 声发射 小波包变换 能量熵 经验模态分解(EMD)
下载PDF
数控机床电动主轴WPD-TSNE-SVM模型故障诊断
12
作者 李坤宏 江桂云 朱代兵 《机械科学与技术》 CSCD 北大核心 2024年第5期832-836,共5页
为了提高数控机床电动主轴故障诊断效率,设计了一种WPD-TSNE-SVM组合模型。利用小波包方法分解主轴振动信号,并完成样本集TSNE降维的过程,利用SVM完成重构特征的故障分类。构建数控机床主轴信号混合特征空间向量,并进行故障诊断分析。... 为了提高数控机床电动主轴故障诊断效率,设计了一种WPD-TSNE-SVM组合模型。利用小波包方法分解主轴振动信号,并完成样本集TSNE降维的过程,利用SVM完成重构特征的故障分类。构建数控机床主轴信号混合特征空间向量,并进行故障诊断分析。研究结果表明:TSNE方法训练样数据形成规律分布特点,采用非线性SVM多故障分类器实现小波包混合特征的故障准确分类。根据径向基核函数建立的非线性SVM诊断方法获得更高准确率。该方法诊断轴承运行故障,获得更高维护效率,确保数控机床主轴运行稳定性。 展开更多
关键词 数控机床 电动主轴 故障诊断 小波包分解
下载PDF
充液复杂管道结构损伤程度识别有限元模拟
13
作者 王晓初 曲灵芝 李赢 《沈阳大学学报(自然科学版)》 CAS 2024年第4期358-363,368,共7页
基于小波包分解法研究充液复杂管道结构损伤程度与损伤指数之间的关系,提出一种针对于充液复杂管道结构的损伤程度识别方法。分别建立相同损伤深度、不同损伤圆心角和不同损伤深度、不同损伤圆心角的充液复杂管道结构模型,研究损伤程度... 基于小波包分解法研究充液复杂管道结构损伤程度与损伤指数之间的关系,提出一种针对于充液复杂管道结构的损伤程度识别方法。分别建立相同损伤深度、不同损伤圆心角和不同损伤深度、不同损伤圆心角的充液复杂管道结构模型,研究损伤程度与损伤指数之间的规律。研究发现,当损伤深度为定量时,以损伤面积为变量的损伤程度与损伤指数间呈非线性相关关系,损伤指数随损伤面积的增加而呈先增后减的趋势;当损伤圆心角为定量时,以损伤深度为变量的损伤程度的增加会使得损伤指数值呈先减后增的趋势。结果表明,基于充液复杂管道结构损伤程度与损伤指数之间的关系,可快速实现损伤程度的识别并对损伤程度的发展趋势进行预判。 展开更多
关键词 小波包分解 充液复杂管道结构 损伤指数 损伤面积 损伤深度
下载PDF
基于EEMD-WPT的温室环境数据优化处理研究
14
作者 吴伟斌 杨柳 +4 位作者 吴维浩 吴贤楠 沈梓颖 张方任 罗远强 《华南农业大学学报》 CAS CSCD 北大核心 2024年第3期397-407,共11页
【目的】解决温室系统中的数据采集传感器容易受到多种环境因素的干扰,从而导致数据中存在噪声的问题。【方法】提出一种集合经验模态分解(Ensemble empirical mode decomposition,EEMD)与小波包自适应阈值(Wavelet packet adaptive thr... 【目的】解决温室系统中的数据采集传感器容易受到多种环境因素的干扰,从而导致数据中存在噪声的问题。【方法】提出一种集合经验模态分解(Ensemble empirical mode decomposition,EEMD)与小波包自适应阈值(Wavelet packet adaptive threshold,WPT)算法联合的数据降噪处理方法,并采用卡尔曼滤波与自适应加权平均算法对降噪后的数据进行融合。【结果】将EEMD-WPT算法应用于含噪温、湿度数据的降噪处理,相较于降噪前的数据,信噪比提升了73.08%。该算法相较于传统WPT算法具有更好的降噪效果,处理后的数据信噪比提升了40.31%,均方根误差降低了84.75%。【结论】该算法能解决数据跳动、冗余和丢失等问题,并为温室控制系统提供了有效的参数,具有较大的实际应用价值。 展开更多
关键词 EEMD 小波包 自适应阈值 降噪 温室 数据融合
下载PDF
基于小波包变换及互相关的古建木材声发射源定位研究
15
作者 周占学 黄晓峥 +2 位作者 梁玉国 曹玉红 徐永峰 《山西建筑》 2024年第9期1-5,共5页
为研究古建筑木构件在承载过程中产生损伤定位问题,利用铅芯折断在木材表面模拟损伤源结合声发射技术对产生的损伤源进行检测。对采集的声发射信号首先采用小波包分解重构对信号进行去噪处理,利用互相关技术对重构信号进行互相关分析进... 为研究古建筑木构件在承载过程中产生损伤定位问题,利用铅芯折断在木材表面模拟损伤源结合声发射技术对产生的损伤源进行检测。对采集的声发射信号首先采用小波包分解重构对信号进行去噪处理,利用互相关技术对重构信号进行互相关分析进而确定信号到达各传感器时差,最后结合时差定位法对声发射源进行定位。试验结果表明:该方法可以有效提高损伤源的定位精度,理论值与实际位置相差很小,从而为准确地反演出声发射源提供有效途径。 展开更多
关键词 木材 声发射 损伤定位 小波包 互相关分析
下载PDF
小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别
16
作者 韩东颖 田伟 +1 位作者 黄岩 朱国庆 《机械科学与技术》 CSCD 北大核心 2024年第1期39-44,共6页
井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构... 井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构损伤的信息;再通过特征参数建立数据集训练并测试井架钢结构损伤识别模型,该模型结合遗传算法自身特点改善了传统BP神经网络的不足。本文识别方法不需要损伤前的数据特征进行对比,便可对损伤位置进行确定。经过对石油井架钢结构模型实验验证:该方法对井架钢结构损伤识别准确率超过90%,相对于BP网络识别准确率以及识别速度均有所提高。 展开更多
关键词 井架钢结构 损伤 小波包 遗传算法 优化的BP神经网络
下载PDF
反激式开关电源故障非侵入式AI诊断方法研究
17
作者 唐圣学 谭立强 +3 位作者 李从宏 严金晶 Muhammad Ehtsham Akram 赵金泽 《电子测量与仪器学报》 CSCD 北大核心 2024年第9期212-222,共11页
将人工智能技术应用到故障诊断领域可以实现电力设备的自动化、智能化诊断,提高诊断精度和效率。以单输入多输出的反激式开关电源为例,针对其因脆弱元件失效而引起的电路工作性能异常的问题,通过分析不同故障模式的信号特性和可分性,提... 将人工智能技术应用到故障诊断领域可以实现电力设备的自动化、智能化诊断,提高诊断精度和效率。以单输入多输出的反激式开关电源为例,针对其因脆弱元件失效而引起的电路工作性能异常的问题,通过分析不同故障模式的信号特性和可分性,提出了融合输入电流和输出电压信息的非侵入式开关电源故障诊断方法。构建了由时域特征及频带小波包奇异熵特征组成的融合时频域信息的多维特征矢量,建立了故障特征与故障模式之间的映射关系。进而,提出了基于人工智能技术的深度神经网络(DNN)故障诊断方法,实时监测反激式开关电源的运行状态,并通过数据分析及时识别故障位置,对潜在故障进行预警。实验结果表明,所提出的方法对单故障和多故障模式均具有良好的诊断效果,诊断准确率可达97.9%,并且,在不同工况下,该方法均可表现出较高的诊断准确率和较强的抗干扰性能。 展开更多
关键词 人工智能 反激式开关电源 时域特征 小波包奇异熵 故障诊断 DNN辨识
下载PDF
基于小波包分析和优化KNN的电动开度阀故障检测方法
18
作者 唐炜 陈远 程鲲鹏 《液压与气动》 北大核心 2024年第1期46-55,共10页
针对以微控制器MCU为控制核心的电动开度阀控制系统难以集成高效且计算量小的故障检测子系统的问题,基于小波包变换和优化K近邻(K-Nearest Neighbor,KNN)算法提出了一种电动开度阀故障检测方法。对阀门振动信号进行小波包变换,计算小波... 针对以微控制器MCU为控制核心的电动开度阀控制系统难以集成高效且计算量小的故障检测子系统的问题,基于小波包变换和优化K近邻(K-Nearest Neighbor,KNN)算法提出了一种电动开度阀故障检测方法。对阀门振动信号进行小波包变换,计算小波包节点的能量值与其重构信号的时域特征参数。根据Pearson系数筛选出两种与能量强相关的故障特征参数:峰峰值与均方根,并将两者作为KNN算法的样本评价指标;通过对评价指标进行加权优化了KNN算法的距离计算公式,分别在MATLAB和实验样机中进行故障检测测试,对应最高分类准确率分别为92.5%与86.7%。结果表明:实验测试与仿真分析具有较好的一致性,该故障检测方法的优势在于计算量小、故障识别率较高,并能有效地应用于以MCU为核心的电动开度阀控制系统。 展开更多
关键词 电动开度阀 小波包分析 优化KNN 故障检测
下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测
19
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合核极限学习机 小波包变换 超参数优化
下载PDF
基于WPES与MEEMD的船用主机振动研究
20
作者 吴刚 江国栋 +1 位作者 闫国华 陈晓东 《舰船科学技术》 北大核心 2024年第4期103-108,共6页
为揭示船用长冲程低速柴油机健康状态下的振动特征,采用小波包能量谱(Wavelet Packet Energy Spectrum, WPES)和改进的总体平均经验模态分解(Modified Ensemble Empirical Mode Decomposition, MEEMD)结合的特征提取方法,对典型推进工... 为揭示船用长冲程低速柴油机健康状态下的振动特征,采用小波包能量谱(Wavelet Packet Energy Spectrum, WPES)和改进的总体平均经验模态分解(Modified Ensemble Empirical Mode Decomposition, MEEMD)结合的特征提取方法,对典型推进工况下低速机的表面振动信号进行3层小波包分解和重构。通过对能量占比较大的节点采用MEEMD方法进行分解,获得IMF1分量频谱。研究结果表明,在40%以下的较低发动机负荷时,各单次燃烧循环的振动波动较小,振动幅值基本一致。提升至50%以上发动机负荷时,燃烧引起振动波动明显增强。50%工况下,中高频能量占总能量的41.51%,为主要振动源。 展开更多
关键词 船用低速柴油机 小波包能量谱 改进的总体平均经验模态分解 振动特性 状态评估
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部