With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit p...With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit periodic patterns and share high associations with metrological data.However,current studies have merely focused on point-wise models and failed to sufficiently investigate the periodic patterns of load series,which hinders the further improvement of short-term load forecasting accuracy.Therefore,this paper improved Autoformer to extract the periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction.In addition,a novel multi-factor attention mechanism was proposed to handle multi-source metrological and numerical weather prediction data and thus correct the forecasted electrical load.The paper also compared the proposed model with various competitive models.As the experimental results reveal,the proposed model outperforms the benchmark models and maintains stability on various types of load consumers.展开更多
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ...Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.展开更多
Time series forecasting research area mainly focuses on developing effective forecasting models toimprove prediction accuracy. An ensemble model composed of autoregressive integrated movingaverage (ARIMA), artificia...Time series forecasting research area mainly focuses on developing effective forecasting models toimprove prediction accuracy. An ensemble model composed of autoregressive integrated movingaverage (ARIMA), artificial neural network (ANN), restricted Boltzmann machines (RBM), anddiscrete wavelet transform (DWT) is presented in this paper. In the proposed model, DWT firstdecomposes time series into approximation and detail. Then Khashei and Bijari's model, which is anensemble model of ARIMA and ANN, is applied to the approximation and detail to extract their bothlinear and nonlinear components and fit the relationship between the components as a function insteadof additive relationship. Furthermore, RBM is used to perform pre-training for generating initialweights and biases based on inputs feature for ANN. Finally, the forecasted approximation and detailare combined to obtain final forecasting. The forecasting capability of the proposed model is testedwith three well-known time series: sunspot, Canadian lynx, exchange rate time series. The predictionperformance is compared to the other six forecasting models. The results indicate that the proposedmodel gives the best performance in all three data sets and all three measures (i.e. MSE, MAE andMAPE).展开更多
Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is ...Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature.Whenever there is a mismatch between generation and demand,the frequency deviation may arise from the actual frequency 50 Hz(in India).To mitigate the frequency deviation issue,it is necessary to develop an effective technique for better frequency control in wind energy systems.In this work,heuristic Fuzzy Logic Based Controller(FLC)is developed for providing an effective frequency control support by modeling the complex behavior of the system to enhance the load forecasting in wind based hybrid power systems.Frequency control is applied to reduce the frequency deviation due tofluctuations and load prediction information using ANN(Artificial Neural Network)and SVM(Support Vector Machine)learning models.The performance analysis of the proposed method is done with different machine learning based approaches.The forecasting assessment is done over various climates with the aim to decrease the prediction errors and to demote the forecasting accuracy.Simulation results show that the Mean Absolute Percentage Error(MAPE),Root Mean Square Error(RMSE)and Normalized Mean Absolute Error(NMAE)values are scaled down by 41.1%,9.9%and 23.1%respectively in the proposed method while comparing with existing wavelet and BPN based approach.展开更多
建设智能教育平台是推动教育智能化的一个重要过程,但智能教育平台依赖的人工智能模型在训练过程中会消耗大量电力,因此,开展短期电力负荷预测对建设智能教育平台具有重要意义.针对在考虑多个属性开展短期电力负荷预测时,由于部分属性...建设智能教育平台是推动教育智能化的一个重要过程,但智能教育平台依赖的人工智能模型在训练过程中会消耗大量电力,因此,开展短期电力负荷预测对建设智能教育平台具有重要意义.针对在考虑多个属性开展短期电力负荷预测时,由于部分属性与电力负荷数据的相关性不强并且Transformer无法捕捉电力负荷数据的时间相关性,而导致电力负荷预测不够准确的问题,基于SR(Székely and Rizzo)距离相关系数、融合时间定位编码和Transformer,提出了一种短期电力负荷预测模型SF-Transformer.SF-Transformer通过SR距离相关系数对影响电力负荷数据的属性进行筛选,选择与电力负荷数据之间SR距离相关系数较大的属性.SF-Transformer采用一种全局时间编码与局部位置编码相结合的融合时间定位编码,有助于模型全面获取电力负荷数据的时间定位信息.在数据集上开展了实验,实验结果表明SF-Transformer与其他模型相比,在两种时长上进行电力负荷预测具有更低的均方根误差和平均绝对误差.展开更多
Electric load forecasting is essential for developing a power supply strategy to improve the reliability of the ac power line data network and provide optimal load scheduling for developing countries where the demand ...Electric load forecasting is essential for developing a power supply strategy to improve the reliability of the ac power line data network and provide optimal load scheduling for developing countries where the demand is increased with high growth rate. In this paper, a short-term load forecasting realized by a generalized neuron–wavelet method is proposed. The proposed method consists of wavelet transform and soft computing technique. The wavelet transform splits up load time series into coarse and detail components to be the features for soft computing techniques using Generalized Neurons Network (GNN). The soft computing techniques forecast each component separately. The modified GNN performs better than the traditional GNN. At the end all forecasted components is summed up to produce final forecasting load.展开更多
基金supported by Science and Technology Project of State Grid Zhejiang Corporation of China“Research on State Estimation and Risk Assessment Technology for New Power Distribution Networks for Widely Connected Distributed Energy”(5211JX22002D).
文摘With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit periodic patterns and share high associations with metrological data.However,current studies have merely focused on point-wise models and failed to sufficiently investigate the periodic patterns of load series,which hinders the further improvement of short-term load forecasting accuracy.Therefore,this paper improved Autoformer to extract the periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction.In addition,a novel multi-factor attention mechanism was proposed to handle multi-source metrological and numerical weather prediction data and thus correct the forecasted electrical load.The paper also compared the proposed model with various competitive models.As the experimental results reveal,the proposed model outperforms the benchmark models and maintains stability on various types of load consumers.
文摘Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.
文摘Time series forecasting research area mainly focuses on developing effective forecasting models toimprove prediction accuracy. An ensemble model composed of autoregressive integrated movingaverage (ARIMA), artificial neural network (ANN), restricted Boltzmann machines (RBM), anddiscrete wavelet transform (DWT) is presented in this paper. In the proposed model, DWT firstdecomposes time series into approximation and detail. Then Khashei and Bijari's model, which is anensemble model of ARIMA and ANN, is applied to the approximation and detail to extract their bothlinear and nonlinear components and fit the relationship between the components as a function insteadof additive relationship. Furthermore, RBM is used to perform pre-training for generating initialweights and biases based on inputs feature for ANN. Finally, the forecasted approximation and detailare combined to obtain final forecasting. The forecasting capability of the proposed model is testedwith three well-known time series: sunspot, Canadian lynx, exchange rate time series. The predictionperformance is compared to the other six forecasting models. The results indicate that the proposedmodel gives the best performance in all three data sets and all three measures (i.e. MSE, MAE andMAPE).
文摘Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature.Whenever there is a mismatch between generation and demand,the frequency deviation may arise from the actual frequency 50 Hz(in India).To mitigate the frequency deviation issue,it is necessary to develop an effective technique for better frequency control in wind energy systems.In this work,heuristic Fuzzy Logic Based Controller(FLC)is developed for providing an effective frequency control support by modeling the complex behavior of the system to enhance the load forecasting in wind based hybrid power systems.Frequency control is applied to reduce the frequency deviation due tofluctuations and load prediction information using ANN(Artificial Neural Network)and SVM(Support Vector Machine)learning models.The performance analysis of the proposed method is done with different machine learning based approaches.The forecasting assessment is done over various climates with the aim to decrease the prediction errors and to demote the forecasting accuracy.Simulation results show that the Mean Absolute Percentage Error(MAPE),Root Mean Square Error(RMSE)and Normalized Mean Absolute Error(NMAE)values are scaled down by 41.1%,9.9%and 23.1%respectively in the proposed method while comparing with existing wavelet and BPN based approach.
文摘建设智能教育平台是推动教育智能化的一个重要过程,但智能教育平台依赖的人工智能模型在训练过程中会消耗大量电力,因此,开展短期电力负荷预测对建设智能教育平台具有重要意义.针对在考虑多个属性开展短期电力负荷预测时,由于部分属性与电力负荷数据的相关性不强并且Transformer无法捕捉电力负荷数据的时间相关性,而导致电力负荷预测不够准确的问题,基于SR(Székely and Rizzo)距离相关系数、融合时间定位编码和Transformer,提出了一种短期电力负荷预测模型SF-Transformer.SF-Transformer通过SR距离相关系数对影响电力负荷数据的属性进行筛选,选择与电力负荷数据之间SR距离相关系数较大的属性.SF-Transformer采用一种全局时间编码与局部位置编码相结合的融合时间定位编码,有助于模型全面获取电力负荷数据的时间定位信息.在数据集上开展了实验,实验结果表明SF-Transformer与其他模型相比,在两种时长上进行电力负荷预测具有更低的均方根误差和平均绝对误差.
文摘Electric load forecasting is essential for developing a power supply strategy to improve the reliability of the ac power line data network and provide optimal load scheduling for developing countries where the demand is increased with high growth rate. In this paper, a short-term load forecasting realized by a generalized neuron–wavelet method is proposed. The proposed method consists of wavelet transform and soft computing technique. The wavelet transform splits up load time series into coarse and detail components to be the features for soft computing techniques using Generalized Neurons Network (GNN). The soft computing techniques forecast each component separately. The modified GNN performs better than the traditional GNN. At the end all forecasted components is summed up to produce final forecasting load.