In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible plat...In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety.展开更多
A Stewart platform is introduced in thc 500 m aperture spherical radio telescope(FAST) as an accuracy adjustable mechanism for teed receivers. Accuracy analysis is the basis of accuracy design. However, a rapid and ...A Stewart platform is introduced in thc 500 m aperture spherical radio telescope(FAST) as an accuracy adjustable mechanism for teed receivers. Accuracy analysis is the basis of accuracy design. However, a rapid and effective accuracy analysis method for parallel manipulator is still needed. In order to enhance solution efficiency, an interval analysis method(lA method) is introduced to solve the terminal error bound of the Stewart platform with detailed solution path. Taking a terminal pose of the Stewart platform in FAST as an example, the terminal error is solved by the Monte Carlo method(MC method) by 4 980 s, the stochastic mathematical method(SM method) by 0.078 s, and the IA method by 2.203 s. Compared with MC method, the terminal error by SM method leads a 20% underestimate while the IA method can envelop the real error bound of the Stewart platform. This indicates that the IA method outperforms the other two methods by providing quick calculations and enveloping the real error bound of the Stewart platform. According to the given structural error of the dimension parameters of the Stewart platform, the IA method gives a maximum position error of 19.91 mm and maximum orientation error of 0.534°, which suggests that the IA method can be used for accuracy design of the Stewart platfbnn in FAST. The 1A method presented is a rapid and effective accuracy analysis method for Stewart platform.展开更多
The spectral methods and ice-induced fatigue analysis are discussed based on Miner's linear cumulative fatigue hypothesis and S-N curve data. According to the long-term data of full-scale tests on the platforms in th...The spectral methods and ice-induced fatigue analysis are discussed based on Miner's linear cumulative fatigue hypothesis and S-N curve data. According to the long-term data of full-scale tests on the platforms in the Bohai Sea, the ice force spectrum of conical structures and the fatigue environmental model are established. Moreover, the finite element model of JZ20-2MSW platform, an example of ice-induced fatigue analysis, is built with ANSYS software. The mode analysis and dynamic analysis in frequency domain under all kinds of ice fatigue work conditions are carded on, and the fatigue life of the structure is estimated in detail. The methods in this paper can be helpful in ice-induced fatigue analysis of ice-resistant platforms.展开更多
The innovative Subsurface Tension Leg Platform(STLP), which is designed to be located below Mean Water Level(M.W.L) to minimize direct wave loading and mitigate the effect of strong surface currents, is considered as ...The innovative Subsurface Tension Leg Platform(STLP), which is designed to be located below Mean Water Level(M.W.L) to minimize direct wave loading and mitigate the effect of strong surface currents, is considered as a competitive alternative system to support shallow-water rated well completion equipment and rigid risers for large ultra-deep water oil field development. A detailed description of the design philosophy of STLP has been published in the series of papers and patents. Nonetheless, design uncertainties arise as limited understanding of various parameters effects on the structural response of STLP, pertaining to the environmental loading, structural properties and hydrodynamic characteristics. This paper focuses on providing quantitative methodology on how each parameter affects the structural response of STLP, which will facilitate establishing the unique design criteria as regards to STLP. Firstly, the entire list of dimensionless groups of input and output parameters is proposed based on VaschyBuckingham theory. Then, numerical models are built and a series of numerical tests are carried out for validating the obtained dimensionless groups. On this basis, the calculation results of a great quantity of parametric studies on the structural response of STLP are presented and discussed in detail. Further, empirical formulae for predicting STLP response are derived through nonlinear regression analysis. Finally, conclusions and discussions are made. It has been demonstrated that the study provides a methodology for better control of key parameters and lays the foundation for optimal design of STLP. The obtained conclusions also have wide ranging applicability in reference to the engineering design and design analysis aspects of deepwater buoy supporting installations, such as Grouped SLOR or TLR system.展开更多
A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of ac...A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of accumulative chord length cubic parameter spline theory and analytic method was adopted for generating the wet surface mesh of platform. The hydrodynamic coefficients of platform were calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platform with low forward speed. The equation of platform motions was established and solved in frequency domain, and the responses of wave-induced loads on the platform can be obtained. With the interpolation method being utilized, the pressure loads on shell elements for finite element analysis (FEA) were converted from those on the hydrodynamic computation mesh, which pave the basis for FEA with commercial software.A computer program based on this method has been developed, and a calculation example of semi-submersible platform was illustrated.Analysis results show that this method is a satisfying approach of wave loads computation for this kind of platform.展开更多
A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in...A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in extreme storm conditions as research object, a transient dynamic analysis method was proposed, which was under both regular and irregular wave loads. The steps of dynamic analysis under extreme conditions were illustrated with an applied case, and the dynamic amplification factor (DAF) was calculated for each response parameter of base shear, overturning moment and hull sway. Finally, the structural response results of dynamic and static were compared and analyzed. The results indicated that the static strength analysis of the Jack-up Platforms was not enough under the dynamic loads including wave and current, further dynamic response analysis considering both computational efficiency and accuracy was necessary.展开更多
By means of nonlinear pushover collapse analysis approach, the aseismic reliability analyses of two offshore jacket platforms in the Bohai Gulf in China are studied according to their ocean location and environmental ...By means of nonlinear pushover collapse analysis approach, the aseismic reliability analyses of two offshore jacket platforms in the Bohai Gulf in China are studied according to their ocean location and environmental loadings there. On the basis of those analyses, an aseismic reliability analysis approach is presented. The results show that the aseismic reliability of those platforms is high. Also it is proved that this aseismic reliability analysis approach is simple, practical and reliable.展开更多
The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stoc...The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stochastic response of fixed offshore platforms to random waves, considering wave-structure interaction and non-linear drag force. The simulation program includes two steps: the first step is the eigenanalysis aspects associated the structure and the second step is response estimation based on spectral equations. The eigenanalysis could be done through conventional finite element method conveniently and its natural frequency and mode shapes obtained. In the second part of the process, the solution of the offshore structural response is obtained by iteration of a series of coupled spectral equations. Considering the third-order term in the drag force, the evaluation of the three-fold convolution should be demanded for nonlinear stochastic response analysis. To demonstrate this method, a numerical analysis is carried out for both linear and non-linear platform motions. The final response spectra have the typical two peaks in agreement with reality, indicating that the hybrid method is effective and can be applied to offshore engineering.展开更多
As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of th...As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of the areas of significant development has been the modelling of spudean performance, where the load-displacement behaviour of the foundation is required to be included in any numerical model of the structure. In this study, beam on nonlinear winkler foundation (BNWF) modeling--which is based on using nonlinear springs and dampers instead of a continuum soil media--is employed for this purpose. A regular monochrome design wave and an irregular wave representing a design sea state are applied to the platform as lateral loading. By using the BNWF model and assuming a granular soil under spudcans, properties such as soil nonlinear behaviour near the structure, contact phenomena at the interface of soil and spudcan (such as uplifting and rocking), and geometrical nonlinear behaviour of the structure are studied. Results of this study show that inelastic behaviour of the soil causes an increase in the lateral displacement at the hull elevation and permanent unequal settlement in soil below the spudcans, which are increased by decreasing the friction angle of the sandy soil. In fact, spudeans and the underlying soil cause a relative fixity at the platform support, which changes the dynamic response of the structure compared with the case where the structure is assumed to have a fixed support or pinned support. For simulating this behaviour without explicit modelling of soil-structure interaction (SSI), moment- rotation curves at the end of platform legs, which are dependent on foundation dimensions and soil characteristics, are obtained. These curves can be used in a simplified model of the platform for considering the relative fixity at the soil- foundation interface.展开更多
In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa...In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.展开更多
In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, t...In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, the technique of multilevel substructure is used, and the saturated soil analysis is set in the highest level substructure model. Based on these theories a dynamic finite element analysis program DIASS for the analysis of interaction between two phase ocean soil foundation and platform structures has been developed. A numerical example is given here to illustrate the influence of the pore water in soil on the structural response of an ocean platform.展开更多
A system reliability estimation method for spatial jacket platforms is developed in this paper. The jacket platform is modeled into three-dimensional assembly of spatial beam and plate elements in Finite Element Metho...A system reliability estimation method for spatial jacket platforms is developed in this paper. The jacket platform is modeled into three-dimensional assembly of spatial beam and plate elements in Finite Element Method (FEM). The limit failure states correspond to collapse of a series of structural members which are identified by engineering design criteria. In this paper the following aspects are taken into account: the punching shear and buckling failures in member failure modes for the tubular joints and tubular columns respectively; incremental loading approach for establishment of the safety margin equations of system failure; the algorithm of enumerating significant failure modes for the structural systems and other concepts, such as the false failure mode and the virtual limit state. The final work is devoted to the reliability analysis for a practical jacket platform presently put into operation on the Bohai Sea. The computed results shows that method suggested in this paper is feasible and effective for the evaluation of the system reliability of offshore platforms.展开更多
For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracke...For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracket and calculate the initial stress condition of new main bracket, the structural stress monitoring of eight key spots is carried out, and then the calibrated finite element model is established according to the field monitoring results. Before cutting the main bracket and all associated structures, eight rectangular rosettes were installed, and a tailored cutting scheme was proposed to release the initial stress, in which the main bracket and associated column and pontoon plates were partly cut. During the cutting procedure, the strains of the monitoring spots were measured, and then the structural stress of the monitored spots were obtained. The stress variation characteristics at different spots during the initial cutting operation were shown and the initial stress condition of the monitored spots was figured out. The loading and support conditions of the semi-submersible platform were calibrated based on the measured initial stress condition, which made the finite element model more credible. The stress condition with the main bracket and associated structures being entirely cut out is analyzed by the Finite Element Method (FEM), which demonstrates the cutting operation to be safe and feasible. In addition, the calibrated finite element model can be used to calculate the initial stress condition of the new main bracket, which will be very helpful for the long-term stress monitoring on the main bracket.展开更多
Tension Leg Platform(TLP) is a hybrid structure used as oil drilling and production facility within water depths of 1200 m. The extension of this TLP concept to deeper waters is a challenge and warrants for some inn...Tension Leg Platform(TLP) is a hybrid structure used as oil drilling and production facility within water depths of 1200 m. The extension of this TLP concept to deeper waters is a challenge and warrants for some innovative design concepts. In this paper, a relatively new concept of TLP which is christened as Tension-Based Tension Leg Platform(TBTLP) and patented by Srinivasan(1998) has been chosen for study. Response analysis of TLP with one tension base under irregular waves for three different sea states has been performed using hydrodynamic tool ANSYS? AQWA?. Results are reported in terms of RAOs, response spectrums for surge, heave and pitch degrees of freedom from which spectral statistics have been obtained. The statistics of TBTLP have been compared with TLPs(without tension base) for two different water depths to highlight the features of the new concept. The effect of viscous damping and loading effects on the RAOs are also investigated.展开更多
Nowadays cloud architecture is widely applied on the internet.New malware aiming at the privacy data stealing or crypto currency mining is threatening the security of cloud platforms.In view of the problems with exist...Nowadays cloud architecture is widely applied on the internet.New malware aiming at the privacy data stealing or crypto currency mining is threatening the security of cloud platforms.In view of the problems with existing application behavior monitoring methods such as coarse-grained analysis,high performance overhead and lack of applicability,this paper proposes a new fine-grained binary program monitoring and analysis method based on multiple system level components,which is used to detect the possible privacy leakage of applications installed on cloud platforms.It can be used online in cloud platform environments for fine-grained automated analysis of target programs,ensuring the stability and continuity of program execution.We combine the external interception and internal instrumentation and design a variety of optimization schemes to further reduce the impact of fine-grained analysis on the performance of target programs,enabling it to be employed in actual environments.The experimental results show that the proposed method is feasible and can achieve the acceptable analysis performance while consuming a small amount of system resources.The optimization schemes can go beyond traditional dynamic instrumentation methods with better analytical performance and can be more applicable to online analysis on cloud platforms.展开更多
In this study, inelastic nonlinear pushover analysis is performed on a 3-D model of a jacket-type offshore platform for the North Sea conditions. The structure' is modelled, analyzed and designed using finite element...In this study, inelastic nonlinear pushover analysis is performed on a 3-D model of a jacket-type offshore platform for the North Sea conditions. The structure' is modelled, analyzed and designed using finite element software SACS (structural analysis computer system). The behavior of jackets with different bracing systems under pushover analysis is examined. Further, by varying the leg batter values of the platform, weight optimization is carried-out. Soil-structure interaction effect is considered in the analyses and the results are compared with the hypothetical fixed-support end condition. Static and dynamic pushover analyses are performed by using wave and seismic loads respectively. From the analyses, it is found that the optimum leg batter varies between 15 to 16 and 2% of weight saving is achieved. Moreover, it has been observed that the type of bracing does not play a major role in the seismic design of jacket platform considering the soil-structure interaction.展开更多
This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficienc...This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.展开更多
The competitive trends of the world market have long been forcing structural engineers to develop minimum weight and labour cost solutions. A direct consequence of this new design trend has been a considerable increas...The competitive trends of the world market have long been forcing structural engineers to develop minimum weight and labour cost solutions. A direct consequence of this new design trend has been a considerable increase in problems related to undesired floor vibrations. For this reason, structural floor systems can become vulnerable to excessive vibrations that are produced by, for example, impacts due to mechanical equipment (e.g., rotating machinery). This study investigates the dynamic behaviour of a production platform constructed of steel and located in the Santos Basin (Merluza field), Sao Paulo/SP, Brazil, when subjected to impacts produced by mechanical equipment (rotating machinery). The structural model consists of two steel decks with a total area of 1,915 m^2 (upper deck: 445 m^2, lower deck: 1,470 m^2) and supported by piles. A numerical analysis is performed to assess the dynamic impacts on the deck structure originating from the electrical generators and compressors. Based on the peak acceleration values obtained for the structure steady-state response, it is possible to evaluate the structural model performance in terms of human comfort, the maximum tolerances of the mechanical equipment and the vibration serviceability limit states of the structure.展开更多
The ultimate strength analysis of offshore jacket platforms is a research project which has been developed in recent years. With the rapid development of marine oil industry, the departments of design and IMR (Inspect...The ultimate strength analysis of offshore jacket platforms is a research project which has been developed in recent years. With the rapid development of marine oil industry, the departments of design and IMR (Inspection, Maintenance and Repair) in the offshore engineering have attached great importance to this project. The research procedure applies to both the stress check of new design platforms and the whole safety assessment of existing platforms. In this paper, we combine the pseudo non-linear technique with the linear analysis program and successfully analyze the ultimate strength of the space frame structure subject to the concentrated load and a real jacket platform subject to the dead load and environmental load.展开更多
In this paper, the nonlinear collapse of the BOHAI-8 pile foundation jacket platform has been analyzed. The ultimate load and collapse process of two computational models of the structure are given. One model is of fi...In this paper, the nonlinear collapse of the BOHAI-8 pile foundation jacket platform has been analyzed. The ultimate load and collapse process of two computational models of the structure are given. One model is of fixed support whose length is eight times the pile leg diameter and the other considers the nonlinearity of the soil-pile interaction.展开更多
基金the National Natural Science Foundation of China(No.U20A20328).
文摘In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety.
基金supported by National Natural Science Foundation of China (Grant Nos. 10973023,11103046,11203048)
文摘A Stewart platform is introduced in thc 500 m aperture spherical radio telescope(FAST) as an accuracy adjustable mechanism for teed receivers. Accuracy analysis is the basis of accuracy design. However, a rapid and effective accuracy analysis method for parallel manipulator is still needed. In order to enhance solution efficiency, an interval analysis method(lA method) is introduced to solve the terminal error bound of the Stewart platform with detailed solution path. Taking a terminal pose of the Stewart platform in FAST as an example, the terminal error is solved by the Monte Carlo method(MC method) by 4 980 s, the stochastic mathematical method(SM method) by 0.078 s, and the IA method by 2.203 s. Compared with MC method, the terminal error by SM method leads a 20% underestimate while the IA method can envelop the real error bound of the Stewart platform. This indicates that the IA method outperforms the other two methods by providing quick calculations and enveloping the real error bound of the Stewart platform. According to the given structural error of the dimension parameters of the Stewart platform, the IA method gives a maximum position error of 19.91 mm and maximum orientation error of 0.534°, which suggests that the IA method can be used for accuracy design of the Stewart platfbnn in FAST. The 1A method presented is a rapid and effective accuracy analysis method for Stewart platform.
基金The paper was supported by the National 863 High Technology Develpoment Plan Project(Grant No.2001AA602015)
文摘The spectral methods and ice-induced fatigue analysis are discussed based on Miner's linear cumulative fatigue hypothesis and S-N curve data. According to the long-term data of full-scale tests on the platforms in the Bohai Sea, the ice force spectrum of conical structures and the fatigue environmental model are established. Moreover, the finite element model of JZ20-2MSW platform, an example of ice-induced fatigue analysis, is built with ANSYS software. The mode analysis and dynamic analysis in frequency domain under all kinds of ice fatigue work conditions are carded on, and the fatigue life of the structure is estimated in detail. The methods in this paper can be helpful in ice-induced fatigue analysis of ice-resistant platforms.
基金financially supported by the National Natural Science Foundation of China(Grant No.51709041)China Postdoctoral Science Foundation(Grant Nos.2017M610178 and 2018T110224)the Fundamental Research Funds for the Central Universities(Grant No.DUT18RC(4)069)
文摘The innovative Subsurface Tension Leg Platform(STLP), which is designed to be located below Mean Water Level(M.W.L) to minimize direct wave loading and mitigate the effect of strong surface currents, is considered as a competitive alternative system to support shallow-water rated well completion equipment and rigid risers for large ultra-deep water oil field development. A detailed description of the design philosophy of STLP has been published in the series of papers and patents. Nonetheless, design uncertainties arise as limited understanding of various parameters effects on the structural response of STLP, pertaining to the environmental loading, structural properties and hydrodynamic characteristics. This paper focuses on providing quantitative methodology on how each parameter affects the structural response of STLP, which will facilitate establishing the unique design criteria as regards to STLP. Firstly, the entire list of dimensionless groups of input and output parameters is proposed based on VaschyBuckingham theory. Then, numerical models are built and a series of numerical tests are carried out for validating the obtained dimensionless groups. On this basis, the calculation results of a great quantity of parametric studies on the structural response of STLP are presented and discussed in detail. Further, empirical formulae for predicting STLP response are derived through nonlinear regression analysis. Finally, conclusions and discussions are made. It has been demonstrated that the study provides a methodology for better control of key parameters and lays the foundation for optimal design of STLP. The obtained conclusions also have wide ranging applicability in reference to the engineering design and design analysis aspects of deepwater buoy supporting installations, such as Grouped SLOR or TLR system.
文摘A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of accumulative chord length cubic parameter spline theory and analytic method was adopted for generating the wet surface mesh of platform. The hydrodynamic coefficients of platform were calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platform with low forward speed. The equation of platform motions was established and solved in frequency domain, and the responses of wave-induced loads on the platform can be obtained. With the interpolation method being utilized, the pressure loads on shell elements for finite element analysis (FEA) were converted from those on the hydrodynamic computation mesh, which pave the basis for FEA with commercial software.A computer program based on this method has been developed, and a calculation example of semi-submersible platform was illustrated.Analysis results show that this method is a satisfying approach of wave loads computation for this kind of platform.
基金Supported by the National Natural Science Foundation of China (Grant No.51079034) Fundamental Research Funds for the Central Universities (Grant No. HEUCFRI003).
文摘A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in extreme storm conditions as research object, a transient dynamic analysis method was proposed, which was under both regular and irregular wave loads. The steps of dynamic analysis under extreme conditions were illustrated with an applied case, and the dynamic amplification factor (DAF) was calculated for each response parameter of base shear, overturning moment and hull sway. Finally, the structural response results of dynamic and static were compared and analyzed. The results indicated that the static strength analysis of the Jack-up Platforms was not enough under the dynamic loads including wave and current, further dynamic response analysis considering both computational efficiency and accuracy was necessary.
基金This project was financially supported by the National Natural Science Foundation of China(Grant No.59779002)
文摘By means of nonlinear pushover collapse analysis approach, the aseismic reliability analyses of two offshore jacket platforms in the Bohai Gulf in China are studied according to their ocean location and environmental loadings there. On the basis of those analyses, an aseismic reliability analysis approach is presented. The results show that the aseismic reliability of those platforms is high. Also it is proved that this aseismic reliability analysis approach is simple, practical and reliable.
基金National Natural Science Foundation of China(Grant No.59895410,59779002)
文摘The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stochastic response of fixed offshore platforms to random waves, considering wave-structure interaction and non-linear drag force. The simulation program includes two steps: the first step is the eigenanalysis aspects associated the structure and the second step is response estimation based on spectral equations. The eigenanalysis could be done through conventional finite element method conveniently and its natural frequency and mode shapes obtained. In the second part of the process, the solution of the offshore structural response is obtained by iteration of a series of coupled spectral equations. Considering the third-order term in the drag force, the evaluation of the three-fold convolution should be demanded for nonlinear stochastic response analysis. To demonstrate this method, a numerical analysis is carried out for both linear and non-linear platform motions. The final response spectra have the typical two peaks in agreement with reality, indicating that the hybrid method is effective and can be applied to offshore engineering.
文摘As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of the areas of significant development has been the modelling of spudean performance, where the load-displacement behaviour of the foundation is required to be included in any numerical model of the structure. In this study, beam on nonlinear winkler foundation (BNWF) modeling--which is based on using nonlinear springs and dampers instead of a continuum soil media--is employed for this purpose. A regular monochrome design wave and an irregular wave representing a design sea state are applied to the platform as lateral loading. By using the BNWF model and assuming a granular soil under spudcans, properties such as soil nonlinear behaviour near the structure, contact phenomena at the interface of soil and spudcan (such as uplifting and rocking), and geometrical nonlinear behaviour of the structure are studied. Results of this study show that inelastic behaviour of the soil causes an increase in the lateral displacement at the hull elevation and permanent unequal settlement in soil below the spudcans, which are increased by decreasing the friction angle of the sandy soil. In fact, spudeans and the underlying soil cause a relative fixity at the platform support, which changes the dynamic response of the structure compared with the case where the structure is assumed to have a fixed support or pinned support. For simulating this behaviour without explicit modelling of soil-structure interaction (SSI), moment- rotation curves at the end of platform legs, which are dependent on foundation dimensions and soil characteristics, are obtained. These curves can be used in a simplified model of the platform for considering the relative fixity at the soil- foundation interface.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51279130 and No. 51239008
文摘In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.
文摘In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, the technique of multilevel substructure is used, and the saturated soil analysis is set in the highest level substructure model. Based on these theories a dynamic finite element analysis program DIASS for the analysis of interaction between two phase ocean soil foundation and platform structures has been developed. A numerical example is given here to illustrate the influence of the pore water in soil on the structural response of an ocean platform.
文摘A system reliability estimation method for spatial jacket platforms is developed in this paper. The jacket platform is modeled into three-dimensional assembly of spatial beam and plate elements in Finite Element Method (FEM). The limit failure states correspond to collapse of a series of structural members which are identified by engineering design criteria. In this paper the following aspects are taken into account: the punching shear and buckling failures in member failure modes for the tubular joints and tubular columns respectively; incremental loading approach for establishment of the safety margin equations of system failure; the algorithm of enumerating significant failure modes for the structural systems and other concepts, such as the false failure mode and the virtual limit state. The final work is devoted to the reliability analysis for a practical jacket platform presently put into operation on the Bohai Sea. The computed results shows that method suggested in this paper is feasible and effective for the evaluation of the system reliability of offshore platforms.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709170 and 51979167)the Ministry of Industry and Information Technology of China(Project No.[2016] 546)+1 种基金the Shanghai Sailing Program(Grant No.17YF1409700)the Open Foundation of State Key Laboratory of Ocean Engineering(Grant No.1716)
文摘For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracket and calculate the initial stress condition of new main bracket, the structural stress monitoring of eight key spots is carried out, and then the calibrated finite element model is established according to the field monitoring results. Before cutting the main bracket and all associated structures, eight rectangular rosettes were installed, and a tailored cutting scheme was proposed to release the initial stress, in which the main bracket and associated column and pontoon plates were partly cut. During the cutting procedure, the strains of the monitoring spots were measured, and then the structural stress of the monitored spots were obtained. The stress variation characteristics at different spots during the initial cutting operation were shown and the initial stress condition of the monitored spots was figured out. The loading and support conditions of the semi-submersible platform were calibrated based on the measured initial stress condition, which made the finite element model more credible. The stress condition with the main bracket and associated structures being entirely cut out is analyzed by the Finite Element Method (FEM), which demonstrates the cutting operation to be safe and feasible. In addition, the calibrated finite element model can be used to calculate the initial stress condition of the new main bracket, which will be very helpful for the long-term stress monitoring on the main bracket.
文摘Tension Leg Platform(TLP) is a hybrid structure used as oil drilling and production facility within water depths of 1200 m. The extension of this TLP concept to deeper waters is a challenge and warrants for some innovative design concepts. In this paper, a relatively new concept of TLP which is christened as Tension-Based Tension Leg Platform(TBTLP) and patented by Srinivasan(1998) has been chosen for study. Response analysis of TLP with one tension base under irregular waves for three different sea states has been performed using hydrodynamic tool ANSYS? AQWA?. Results are reported in terms of RAOs, response spectrums for surge, heave and pitch degrees of freedom from which spectral statistics have been obtained. The statistics of TBTLP have been compared with TLPs(without tension base) for two different water depths to highlight the features of the new concept. The effect of viscous damping and loading effects on the RAOs are also investigated.
基金This work is supported by the National Natural Science Foundation of China(General Program,Grant No.61572253,YZ,http://www.nsfc.gov.cn)the Innovation Program for Graduate Students of Jiangsu Province,China(Grant No.KYLX16_0384,JP,http://jyt.jiangsu.gov.cn).
文摘Nowadays cloud architecture is widely applied on the internet.New malware aiming at the privacy data stealing or crypto currency mining is threatening the security of cloud platforms.In view of the problems with existing application behavior monitoring methods such as coarse-grained analysis,high performance overhead and lack of applicability,this paper proposes a new fine-grained binary program monitoring and analysis method based on multiple system level components,which is used to detect the possible privacy leakage of applications installed on cloud platforms.It can be used online in cloud platform environments for fine-grained automated analysis of target programs,ensuring the stability and continuity of program execution.We combine the external interception and internal instrumentation and design a variety of optimization schemes to further reduce the impact of fine-grained analysis on the performance of target programs,enabling it to be employed in actual environments.The experimental results show that the proposed method is feasible and can achieve the acceptable analysis performance while consuming a small amount of system resources.The optimization schemes can go beyond traditional dynamic instrumentation methods with better analytical performance and can be more applicable to online analysis on cloud platforms.
文摘In this study, inelastic nonlinear pushover analysis is performed on a 3-D model of a jacket-type offshore platform for the North Sea conditions. The structure' is modelled, analyzed and designed using finite element software SACS (structural analysis computer system). The behavior of jackets with different bracing systems under pushover analysis is examined. Further, by varying the leg batter values of the platform, weight optimization is carried-out. Soil-structure interaction effect is considered in the analyses and the results are compared with the hypothetical fixed-support end condition. Static and dynamic pushover analyses are performed by using wave and seismic loads respectively. From the analyses, it is found that the optimum leg batter varies between 15 to 16 and 2% of weight saving is achieved. Moreover, it has been observed that the type of bracing does not play a major role in the seismic design of jacket platform considering the soil-structure interaction.
基金Supported by the National Natural Science Foundation of China under Grant No.51109040
文摘This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.
基金Acknowledgments The authors gratefully acknowledge the support for this work provided by the Brazilian Science Foundations: CAPES, CNPq and FAPERJ.
文摘The competitive trends of the world market have long been forcing structural engineers to develop minimum weight and labour cost solutions. A direct consequence of this new design trend has been a considerable increase in problems related to undesired floor vibrations. For this reason, structural floor systems can become vulnerable to excessive vibrations that are produced by, for example, impacts due to mechanical equipment (e.g., rotating machinery). This study investigates the dynamic behaviour of a production platform constructed of steel and located in the Santos Basin (Merluza field), Sao Paulo/SP, Brazil, when subjected to impacts produced by mechanical equipment (rotating machinery). The structural model consists of two steel decks with a total area of 1,915 m^2 (upper deck: 445 m^2, lower deck: 1,470 m^2) and supported by piles. A numerical analysis is performed to assess the dynamic impacts on the deck structure originating from the electrical generators and compressors. Based on the peak acceleration values obtained for the structure steady-state response, it is possible to evaluate the structural model performance in terms of human comfort, the maximum tolerances of the mechanical equipment and the vibration serviceability limit states of the structure.
文摘The ultimate strength analysis of offshore jacket platforms is a research project which has been developed in recent years. With the rapid development of marine oil industry, the departments of design and IMR (Inspection, Maintenance and Repair) in the offshore engineering have attached great importance to this project. The research procedure applies to both the stress check of new design platforms and the whole safety assessment of existing platforms. In this paper, we combine the pseudo non-linear technique with the linear analysis program and successfully analyze the ultimate strength of the space frame structure subject to the concentrated load and a real jacket platform subject to the dead load and environmental load.
文摘In this paper, the nonlinear collapse of the BOHAI-8 pile foundation jacket platform has been analyzed. The ultimate load and collapse process of two computational models of the structure are given. One model is of fixed support whose length is eight times the pile leg diameter and the other considers the nonlinearity of the soil-pile interaction.