This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ...This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.展开更多
In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in...In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.展开更多
In this paper,we study a quantum kinetic-fluid model in a three-dimensional torus.This model is a coupling of the Vlasov-Fokker-Planck equation and the compressible quantum Navier-Stokes equations with degenerate visc...In this paper,we study a quantum kinetic-fluid model in a three-dimensional torus.This model is a coupling of the Vlasov-Fokker-Planck equation and the compressible quantum Navier-Stokes equations with degenerate viscosity.We establish a global weak solution to this model for arbitrarily large initial data when the pressure takes the form p(ρ)=ργ+pc(ρ),whereγ>1 is the adiabatic coefficient and pc(ρ)satisfies■for k≥4 and some constant c>0.展开更多
In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressu...In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressure Pc,we prove the global existence of weak solutions with the pressure P+Pc,where P=Aργwithγ≥1.Our main result extends the one in[13]on the quantum Navier-Stokes equations to the CNSLLM system.展开更多
In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin app...In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin approximation and weak compactness theory.展开更多
In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Land...In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Landau approximation. Local in space energy inequalities are employed to recover the estimates on the second order spatial derivatives of the director fields locally in time, which cannot be derived from the basic energy balance. It is shown that these weak solutions satisfy the temperature equation, and also the total energy equation but away from at most finite many "singular" times, at which the energy concentration occurs and the director field losses its second order derivatives.展开更多
It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. M...It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. Meanwhile it is obtained the solution is exponential decay when the initial data has compact support.展开更多
In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H...In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H˙s(R n),(0.1)(1)where s∈(0,1),0≤α,β<2s<n,μ∈(0,n),γ<γH,Iμ(x)=|x|−μ,Fα(x,u)=|u(x)|2#μ(α)|x|δμ(α),fα(x,u)=|u(x)|2#μ(α)−2 u(x)|x|δμ(α),2#μ(α)=(1−μ2n)⋅2∗s(α),δμ(α)=(1−μ2n)α,2∗s(α)=2(n−α)n−2s andγH=4 sΓ2(n+2s4)Γ2(n−2s4).We show that problem(0.1)admits at least a weak solution under some conditions.To prove the main result,we develop some useful tools based on a weighted Morrey space.To be precise,we discover the embeddings H˙s(R n)↪L 2∗s(α)(R n,|y|−α)↪L p,n−2s2 p+pr(R n,|y|−pr),(0.2)(2)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α))and r=α2∗s(α).We also establish an improved Sobolev inequality,(∫R n|u(y)|2∗s(α)|y|αdy)12∗s(α)≤C||u||θH˙s(R n)||u||1−θL p,n−2s2 p+pr(R n,|y|−pr),∀u∈H˙s(R n),(0.3)(3)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α)),r=α2∗s(α),0<max{22∗s(α),2∗s−12∗s(α)}<θ<1,2∗s=2nn−2s and C=C(n,s,α)>0 is a constant.Inequality(0.3)is a more general form of Theorem 1 in Palatucci,Pisante[1].By using the mountain pass lemma along with(0.2)and(0.3),we obtain a nontrivial weak solution to problem(0.1)in a direct way.It is worth pointing out that(0.2)and 0.3)could be applied to simplify the proof of the existence results in[2]and[3].展开更多
In this paper,the following result is given by using Hodge decomposition: There exists r(0) = r(0)(n,p,a,b), such that if u is an element of W-loc(1,r)(Omega) is a very weak solution of (1.1),with C max{1,p - 1} < ...In this paper,the following result is given by using Hodge decomposition: There exists r(0) = r(0)(n,p,a,b), such that if u is an element of W-loc(1,r)(Omega) is a very weak solution of (1.1),with C max{1,p - 1} < r < p and u is an element of W-0(1,r)(Omega;partial derivativeOmega\E) where E subset of partial derivativeOmega is a closed set and small in an appropriate capacity sense, then u = 0, a.e. in Omega provided that r(0) < r < p.展开更多
A new denoising-deblurring model in image restoration is proposed,in which the regularization term carries out anisotropic diffusion on the edges and isotropic diffusion on the regular regions.The existence and unique...A new denoising-deblurring model in image restoration is proposed,in which the regularization term carries out anisotropic diffusion on the edges and isotropic diffusion on the regular regions.The existence and uniqueness of weak solutions for this model are proved,and the numerical model is also testified.Compared with the TV diffusion,this model preferably reduces the staircase appearing in the restored images.展开更多
In this paper, the authors consider a system of degenerate Davey-Stewartson equations. They prove the global existence of weak solutions in some weighted function spaces and the decay of weak solutions in some anisotr...In this paper, the authors consider a system of degenerate Davey-Stewartson equations. They prove the global existence of weak solutions in some weighted function spaces and the decay of weak solutions in some anisotropic spaces for appropriate initial data.展开更多
This paper concerns large time behavior of a regular weak solution for non-Newtonian flow equations. It is shown that the decay of the solution is of exponential type when the force term is equal to zero and the domai...This paper concerns large time behavior of a regular weak solution for non-Newtonian flow equations. It is shown that the decay of the solution is of exponential type when the force term is equal to zero and the domain is bounded. Moreover, the ratio of the enstrophy over the energy has a limit as time tends to infinity, which is an eigenvaiue of the Stokes operator.展开更多
In this article, we investigate the global behavior of weak solutions of a simplified Ericksen-Leslie system for compressible flows of nematic liquid crystals in time in a bounded three-dimension domain-arbitrary forc...In this article, we investigate the global behavior of weak solutions of a simplified Ericksen-Leslie system for compressible flows of nematic liquid crystals in time in a bounded three-dimension domain-arbitrary forces. By adapting the arguments for the compressible Navier-Stokes equations, and carefully analyzing the direction field of liquid crystals in the equations of angular momentum, we show the existence of bounded absorbing sets, global bounded trajectories, and global attractors to weak solutions of compressible flows of nematic liquid crystals with the adiabatic constant γ〉5/3.展开更多
Using finite differences and entropy inequalities, the global existence of weak solutions to a multidimensional parabolic strongly coupled prey-predator model is obtained. The nonnegativity of the solutions is also sh...Using finite differences and entropy inequalities, the global existence of weak solutions to a multidimensional parabolic strongly coupled prey-predator model is obtained. The nonnegativity of the solutions is also shown.展开更多
We study the regularity of weak solutions to a class of second order parabolic system under only the assumption of continuous coefficients.We prove that the weak solution u to such system is locally Holder continuous ...We study the regularity of weak solutions to a class of second order parabolic system under only the assumption of continuous coefficients.We prove that the weak solution u to such system is locally Holder continuous with any exponent α∈(0,1)outside a singular set with zero parabolic measure.In particular,we prove that the regularity point in Q_(T) is an open set with full measure,and we obtain a general criterion for the weak solution to be regular in the neighborhood of a given point.Finally,we deduce the fractional time and fractional space differentiability of D_(u),and at this stage,we obtain the Hausdorff dimension of a singular set of u.展开更多
In this paper we deal with a nonlinear interaction problem between an incompressible viscous fluid and a nonlinear thermoelastic plate.The nonlinearity in the plate equation corresponds to nonlinear elastic force in v...In this paper we deal with a nonlinear interaction problem between an incompressible viscous fluid and a nonlinear thermoelastic plate.The nonlinearity in the plate equation corresponds to nonlinear elastic force in various physically relevant semilinear and quasilinear plate models.We prove the existence of a weak solution for this problem by constructing a hybrid approximation scheme that,via operator splitting,decouples the system into two sub-problems,one piece-wise stationary for the fluid and one time-continuous and in a finite basis for the structure.To prove the convergence of the approximate quasilinear elastic force,we develop a compensated compactness method that relies on the maximal monotonicity property of this nonlinear function.展开更多
We employ the Galerkin method to prove the global existence of weak solutions to a phase-field model which is suitable to describe a sort of interface motion driven by configurational forces.The higher-order derivativ...We employ the Galerkin method to prove the global existence of weak solutions to a phase-field model which is suitable to describe a sort of interface motion driven by configurational forces.The higher-order derivative of unknown S exists in the sense of local weak derivatives since it may be not summable over the original open domain.The existence proof is valid in the one-dimensional case.展开更多
In this article, we are concerned with the global weak solutions to the 1D com- pressible viscous hydrodynamic equations with dispersion correction δ2ρ((φ(ρ))xxφ′(ρ))x with φ(ρ) = ρα. The model co...In this article, we are concerned with the global weak solutions to the 1D com- pressible viscous hydrodynamic equations with dispersion correction δ2ρ((φ(ρ))xxφ′(ρ))x with φ(ρ) = ρα. The model consists of viscous stabilizations because of quantum Fokker-Planck operator in the Wigner equation and is supplemented with periodic boundary and initial con- ditions. The diffusion term εuxx in the momentum equation may be interpreted as a classical conservative friction term because of particle interactions. We extend the existence result in [1] (α=1/2) to 0 〈 α ≤ 1. In addition, we perform the limit ε→0 with respect to 0 〈 α ≤1/2.展开更多
We consider an initial-boundary value problem for a p-biharmonic parabolic equation. Under some assumptions on the initial value, we construct approximate solutions by the discrete-time method. By means of uniform est...We consider an initial-boundary value problem for a p-biharmonic parabolic equation. Under some assumptions on the initial value, we construct approximate solutions by the discrete-time method. By means of uniform estimates on solutions of the time-difference equations, we establish the existence of weak solutions, and also discuss the uniqueness.展开更多
3-D Euler equations is considered in this paper. In cylindrical coordinatesystems, if the components of the velocity fields and scalar function pdo not depend on polar angle θand uθ= 0, author first gives a detailed...3-D Euler equations is considered in this paper. In cylindrical coordinatesystems, if the components of the velocity fields and scalar function pdo not depend on polar angle θand uθ= 0, author first gives a detailed Proof of someestimates in Section 2 and then obtains the global existence of weak solutions of 3-D Eulerequations in Section 3.展开更多
基金supported by the National Natural Science Foundation of China(12301251,12271232)the Natural Science Foundation of Shandong Province,China(ZR2021QA038)the Scientific Research Foundation of Linyi University,China(LYDX2020BS014)。
文摘This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.
基金support by the NSFC(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)support by the China Postdoctoral Science Foundation(2023M742401)。
文摘In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.
基金supported by the NSFC(12071212)supported by NSFC(12171415)+1 种基金supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Scientific Research Foundation of Yantai University(2219008)。
文摘In this paper,we study a quantum kinetic-fluid model in a three-dimensional torus.This model is a coupling of the Vlasov-Fokker-Planck equation and the compressible quantum Navier-Stokes equations with degenerate viscosity.We establish a global weak solution to this model for arbitrarily large initial data when the pressure takes the form p(ρ)=ργ+pc(ρ),whereγ>1 is the adiabatic coefficient and pc(ρ)satisfies■for k≥4 and some constant c>0.
基金partially supported by the National Natural Sciences Foundation of China(11931010,12061003)。
文摘In this paper,we consider the weak solutions of compressible Navier-StokesLandau-Lifshitz-Maxwell(CNSLLM)system for quantum fluids with a linear density dependent viscosity in a 3D torus.By introducing the cold pressure Pc,we prove the global existence of weak solutions with the pressure P+Pc,where P=Aργwithγ≥1.Our main result extends the one in[13]on the quantum Navier-Stokes equations to the CNSLLM system.
文摘In this paper, we prove the existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz equations in two-dimension with finite energy.The main techniques is the Faedo-Galerkin approximation and weak compactness theory.
基金Hong Kong RGC Earmarked Research Grants 14305315,CUHK4041/11P and CUHK4048/13PThe Chinese University of Hong Kong,a Croucher Foundation-CAS Joint Grant,and a NSFC/RGC Joint Research Scheme(N-CUHK443/14)
文摘In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Landau approximation. Local in space energy inequalities are employed to recover the estimates on the second order spatial derivatives of the director fields locally in time, which cannot be derived from the basic energy balance. It is shown that these weak solutions satisfy the temperature equation, and also the total energy equation but away from at most finite many "singular" times, at which the energy concentration occurs and the director field losses its second order derivatives.
文摘It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. Meanwhile it is obtained the solution is exponential decay when the initial data has compact support.
基金Natural Science Foundation of China(11771166)Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46.
文摘In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H˙s(R n),(0.1)(1)where s∈(0,1),0≤α,β<2s<n,μ∈(0,n),γ<γH,Iμ(x)=|x|−μ,Fα(x,u)=|u(x)|2#μ(α)|x|δμ(α),fα(x,u)=|u(x)|2#μ(α)−2 u(x)|x|δμ(α),2#μ(α)=(1−μ2n)⋅2∗s(α),δμ(α)=(1−μ2n)α,2∗s(α)=2(n−α)n−2s andγH=4 sΓ2(n+2s4)Γ2(n−2s4).We show that problem(0.1)admits at least a weak solution under some conditions.To prove the main result,we develop some useful tools based on a weighted Morrey space.To be precise,we discover the embeddings H˙s(R n)↪L 2∗s(α)(R n,|y|−α)↪L p,n−2s2 p+pr(R n,|y|−pr),(0.2)(2)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α))and r=α2∗s(α).We also establish an improved Sobolev inequality,(∫R n|u(y)|2∗s(α)|y|αdy)12∗s(α)≤C||u||θH˙s(R n)||u||1−θL p,n−2s2 p+pr(R n,|y|−pr),∀u∈H˙s(R n),(0.3)(3)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α)),r=α2∗s(α),0<max{22∗s(α),2∗s−12∗s(α)}<θ<1,2∗s=2nn−2s and C=C(n,s,α)>0 is a constant.Inequality(0.3)is a more general form of Theorem 1 in Palatucci,Pisante[1].By using the mountain pass lemma along with(0.2)and(0.3),we obtain a nontrivial weak solution to problem(0.1)in a direct way.It is worth pointing out that(0.2)and 0.3)could be applied to simplify the proof of the existence results in[2]and[3].
文摘In this paper,the following result is given by using Hodge decomposition: There exists r(0) = r(0)(n,p,a,b), such that if u is an element of W-loc(1,r)(Omega) is a very weak solution of (1.1),with C max{1,p - 1} < r < p and u is an element of W-0(1,r)(Omega;partial derivativeOmega\E) where E subset of partial derivativeOmega is a closed set and small in an appropriate capacity sense, then u = 0, a.e. in Omega provided that r(0) < r < p.
基金Supported by the National Natural Science Foundation of China (10531040)
文摘A new denoising-deblurring model in image restoration is proposed,in which the regularization term carries out anisotropic diffusion on the edges and isotropic diffusion on the regular regions.The existence and uniqueness of weak solutions for this model are proved,and the numerical model is also testified.Compared with the TV diffusion,this model preferably reduces the staircase appearing in the restored images.
文摘In this paper, the authors consider a system of degenerate Davey-Stewartson equations. They prove the global existence of weak solutions in some weighted function spaces and the decay of weak solutions in some anisotropic spaces for appropriate initial data.
文摘This paper concerns large time behavior of a regular weak solution for non-Newtonian flow equations. It is shown that the decay of the solution is of exponential type when the force term is equal to zero and the domain is bounded. Moreover, the ratio of the enstrophy over the energy has a limit as time tends to infinity, which is an eigenvaiue of the Stokes operator.
文摘In this article, we investigate the global behavior of weak solutions of a simplified Ericksen-Leslie system for compressible flows of nematic liquid crystals in time in a bounded three-dimension domain-arbitrary forces. By adapting the arguments for the compressible Navier-Stokes equations, and carefully analyzing the direction field of liquid crystals in the equations of angular momentum, we show the existence of bounded absorbing sets, global bounded trajectories, and global attractors to weak solutions of compressible flows of nematic liquid crystals with the adiabatic constant γ〉5/3.
基金supported by the National Natural Science Foundation of China (Nos. 10701024, 10601011)
文摘Using finite differences and entropy inequalities, the global existence of weak solutions to a multidimensional parabolic strongly coupled prey-predator model is obtained. The nonnegativity of the solutions is also shown.
基金The first author is partially supported by the Postdoctoral Science Foundation of China(2019TQ0006)the second author is partially supported by the National Natural Science Foundation of China(11726023,11531010).
文摘We study the regularity of weak solutions to a class of second order parabolic system under only the assumption of continuous coefficients.We prove that the weak solution u to such system is locally Holder continuous with any exponent α∈(0,1)outside a singular set with zero parabolic measure.In particular,we prove that the regularity point in Q_(T) is an open set with full measure,and we obtain a general criterion for the weak solution to be regular in the neighborhood of a given point.Finally,we deduce the fractional time and fractional space differentiability of D_(u),and at this stage,we obtain the Hausdorff dimension of a singular set of u.
基金partially supported by National Natural Science Foundation of China(11631008)。
文摘In this paper we deal with a nonlinear interaction problem between an incompressible viscous fluid and a nonlinear thermoelastic plate.The nonlinearity in the plate equation corresponds to nonlinear elastic force in various physically relevant semilinear and quasilinear plate models.We prove the existence of a weak solution for this problem by constructing a hybrid approximation scheme that,via operator splitting,decouples the system into two sub-problems,one piece-wise stationary for the fluid and one time-continuous and in a finite basis for the structure.To prove the convergence of the approximate quasilinear elastic force,we develop a compensated compactness method that relies on the maximal monotonicity property of this nonlinear function.
基金supported by the Science and Technology Commission of Shanghai Municipality of China(No.20JC1413600)。
文摘We employ the Galerkin method to prove the global existence of weak solutions to a phase-field model which is suitable to describe a sort of interface motion driven by configurational forces.The higher-order derivative of unknown S exists in the sense of local weak derivatives since it may be not summable over the original open domain.The existence proof is valid in the one-dimensional case.
文摘In this article, we are concerned with the global weak solutions to the 1D com- pressible viscous hydrodynamic equations with dispersion correction δ2ρ((φ(ρ))xxφ′(ρ))x with φ(ρ) = ρα. The model consists of viscous stabilizations because of quantum Fokker-Planck operator in the Wigner equation and is supplemented with periodic boundary and initial con- ditions. The diffusion term εuxx in the momentum equation may be interpreted as a classical conservative friction term because of particle interactions. We extend the existence result in [1] (α=1/2) to 0 〈 α ≤ 1. In addition, we perform the limit ε→0 with respect to 0 〈 α ≤1/2.
文摘We consider an initial-boundary value problem for a p-biharmonic parabolic equation. Under some assumptions on the initial value, we construct approximate solutions by the discrete-time method. By means of uniform estimates on solutions of the time-difference equations, we establish the existence of weak solutions, and also discuss the uniqueness.
文摘3-D Euler equations is considered in this paper. In cylindrical coordinatesystems, if the components of the velocity fields and scalar function pdo not depend on polar angle θand uθ= 0, author first gives a detailed Proof of someestimates in Section 2 and then obtains the global existence of weak solutions of 3-D Eulerequations in Section 3.