In this paper, we present a weak Galerkin (WG) mixed finite element method for solving the second-order elliptic equations with Robin boundary conditions. Stability and a priori error estimates for the coupled metho...In this paper, we present a weak Galerkin (WG) mixed finite element method for solving the second-order elliptic equations with Robin boundary conditions. Stability and a priori error estimates for the coupled method are derived. We present the optimal order error estimate for the WG-MFEM approximations in a norm that is related to the L^2 for the flux and H1 for the scalar function. Also an optimal order error estimate in L^2 is derived for the scalar approximation by using a duality argument. A series of numerical experiments is presented that verify our theoretical results.展开更多
Let Q(x) be a nonnegative definite, symmetric matrix such that √Q(X) is Lipschitz con- tinuous. Given a real-valued function b(x) and a weak solution u(x) of div(QVu) = b, we find sufficient conditions in o...Let Q(x) be a nonnegative definite, symmetric matrix such that √Q(X) is Lipschitz con- tinuous. Given a real-valued function b(x) and a weak solution u(x) of div(QVu) = b, we find sufficient conditions in order that √Qu has some first order smoothness. Specifically, if is a bounded open set in Rn, we study when the components of vVu belong to the first order Sobolev space W1'2(Ω) defined by Sawyer and Wheeden. Alternately we study when each of n first order Lipschitz vector field derivatives Xiu has some first order smoothness if u is a weak solution in Ω of ^-^-1 X^Xiu + b = O. We do not assume that {Xi}is a HSrmander collection of vector fields in ~. The results signal ones for more general equations.展开更多
文摘In this paper, we present a weak Galerkin (WG) mixed finite element method for solving the second-order elliptic equations with Robin boundary conditions. Stability and a priori error estimates for the coupled method are derived. We present the optimal order error estimate for the WG-MFEM approximations in a norm that is related to the L^2 for the flux and H1 for the scalar function. Also an optimal order error estimate in L^2 is derived for the scalar approximation by using a duality argument. A series of numerical experiments is presented that verify our theoretical results.
文摘Let Q(x) be a nonnegative definite, symmetric matrix such that √Q(X) is Lipschitz con- tinuous. Given a real-valued function b(x) and a weak solution u(x) of div(QVu) = b, we find sufficient conditions in order that √Qu has some first order smoothness. Specifically, if is a bounded open set in Rn, we study when the components of vVu belong to the first order Sobolev space W1'2(Ω) defined by Sawyer and Wheeden. Alternately we study when each of n first order Lipschitz vector field derivatives Xiu has some first order smoothness if u is a weak solution in Ω of ^-^-1 X^Xiu + b = O. We do not assume that {Xi}is a HSrmander collection of vector fields in ~. The results signal ones for more general equations.