This paper proposes numerical methods for solving hybrid weakly singular integro-differential equations of the second kind. The terms in these equations are in the following order: derivative term of a state, integro-...This paper proposes numerical methods for solving hybrid weakly singular integro-differential equations of the second kind. The terms in these equations are in the following order: derivative term of a state, integro-differential term of a state with a weakly singular kernel, a state, integral term of a state with a smooth kernel, and force. The original class of weakly singular integro-differential equations of the first kind is derived from aeroelasticity mathematical models. Among the proposed methods, the method for solving linear cases is fully based on previously reported approximation scheme for equations of the first kind. For nonlinear cases, a revised method is proposed. Examples are presented to demonstrate the effectiveness of the proposed methods, and the results indicate that the proposed methods facilitate achieving satisfactory and accurate approximations.展开更多
This study presents numerical methods for solving the minimum energies that satisfy typical optimal requirements in the transition between two dynamic systems where each system is governed by a different kind of weakl...This study presents numerical methods for solving the minimum energies that satisfy typical optimal requirements in the transition between two dynamic systems where each system is governed by a different kind of weakly singular integro-differential equation. The class of weakly singular integro-differential equations originates from mathematical models in aeroelasticity. The proposed numerical methods are based on earlier reported approximation schemes for the equations of the first kind and the second kind. The main result of this study is the development of numerical techniques for determining the stability between two dynamic systems in the minimum energy sense.展开更多
In this study, a revised version of some numerical methods for a class of hybrid integro-differential equations with weakly singular kernels (Abel types) is presented. These equations were developed from a class of in...In this study, a revised version of some numerical methods for a class of hybrid integro-differential equations with weakly singular kernels (Abel types) is presented. These equations were developed from a class of integro-differential equations of first kind originating from an aeroelasticity problem. By manipulating the bounds of initial conditions with random variations, this study numerically demonstrated the well-posedness properties of the equations. Finally, an assumption of separating variables, allowed for linear splines to be chosen as a basis and for the differentiation and integration of the integro-differential part to be interchanged;hence, a numerical scheme was constructed.展开更多
Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a...Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel.The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative.The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation(IDE).The proposed scheme is obtained in the form of an algebraic system by reducing the time dependent IDE through unconditionally stable Euler backward method as time integrator.The scheme is validated using a homogeneous and two nonhomogeneous test problems.Conditioning of the system matrix and numerical convergence of the method are analyzed for spatial and temporal domain discretization parameters.Comparison of results of the present approach with Sinc collocation method and quasi-wavelet method are also made.展开更多
In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transforma...In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.展开更多
For fractional Volterra integro-differential equations(FVIDEs)with weakly singular kernels,this paper proposes a generalized Jacobi spectral Galerkin method.The basis functions for the provided method are selected gen...For fractional Volterra integro-differential equations(FVIDEs)with weakly singular kernels,this paper proposes a generalized Jacobi spectral Galerkin method.The basis functions for the provided method are selected generalized Jacobi functions(GJFs),which can be utilized as natural basis functions of spectral methods for weakly singular FVIDEs when appropriately constructed.The developed method's spectral rate of convergence is determined using the L^(∞)-norm and the weighted L^(2)-norm.Numerical results indicate the usefulness of the proposed method.展开更多
In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point ...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integra...Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integral system of equations. The vanishing moments of the wavelet make the wavelet coefficient matrices sparse, while the continuity of the derivative functions of basis overcomes naturally the singular problem of the integral solution. The uniform convergence of the approximate solution by the wavelet method is proved and the error bound is given. Finally, numerical example is presented to show the application of the wavelet method.展开更多
This study presents a numerical method for determining the minimum time required for the states of one class of integro-differential equations of the first kind to reach its attainable region by assuming the forcing t...This study presents a numerical method for determining the minimum time required for the states of one class of integro-differential equations of the first kind to reach its attainable region by assuming the forcing terms of the equations as controls. These equations consist of integro-differential parts containing weakly singular kernels. The feasibility of the numerical method is demonstrated by comparing the minimum time and corresponding possible time by using extreme controls to reach the attainable region under different initial conditions.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
This study presents numerical algorithms for solving a class of equations that partly consists of derivatives of the unknown state at previous certain times, as well as an integro-differential term containing a weakly...This study presents numerical algorithms for solving a class of equations that partly consists of derivatives of the unknown state at previous certain times, as well as an integro-differential term containing a weakly singular kernel. These equations are types of integro-differential equation of the second kind and were originally obtained from an aeroelasticity problem. One of the main contributions of this study is to propose numerical algorithms that do not involve transforming the original equation into the corresponding Volterra equation, but still enable the numerical solution of the original equation to be determined. The feasibility of the proposed numerical algorithm is demonstrated by applying examples in measuring the maximum errors with exact solutions at every computed nodes and calculating the corresponding numerical rates of convergence thereafter.展开更多
A numerical method using weak formulation is proposed to solve singularly perturbed differential equations. The numerical method is applied to both linear and nonlinear perturbation problems. A linear differential equ...A numerical method using weak formulation is proposed to solve singularly perturbed differential equations. The numerical method is applied to both linear and nonlinear perturbation problems. A linear differential equation is solved using its weak formulation with a test space composed of exponential functions matching boundary layers. A nonlinear singular perturbation problem is converted into a system of linear differentiation equations. Then each linear differential equation is solved iteratively. The uniform convergence, which is independent of the singular perturbation parameter, is numerically verified.展开更多
This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functio...This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functions are used for interpolation in both methods.The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations.The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values.An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method as well as for determination of weighting coefficients in the second method.An explicit scheme is employed as time integrator to solve the system of ODEs obtained in the second method.The methods are tested with three nonhomogeneous problems for their validation.Stability,computational efficiency and numerical convergence of the methods are analyzed.Comparison of errors in approximations produced by the present methods versus different values of discretization parameters and convection-diffusion coefficients are made.Convection and diffusion dominant cases are discussed in terms of Peclet number.The results are also compared with cubic B-spline collocation method.展开更多
We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating s...We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating sequences generatedby the method of vanishing viscosity. The uniqueness of the generalized solutions whichcan be obtained by the method of vanishing viscosity is also obtained.展开更多
The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying...The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth.We provide a rigorous error analysis for the spectral methods,which shows that both the errors of approximate solutions and the errors of approximate derivatives of the solutions decay exponentially in L^(∞)-norm and weighted L^(2)-norm.The numerical examples are given to illustrate the theoretical results.展开更多
In this article, a degenerate and singular diffusion problem is studied. The existence of solutions is established by parabolic regularization. Some properties of solutions, for instance, asymptotic behavior, are also...In this article, a degenerate and singular diffusion problem is studied. The existence of solutions is established by parabolic regularization. Some properties of solutions, for instance, asymptotic behavior, are also discussed.展开更多
This paper is concerned with obtaining an approximate solution and an approximate derivative of the solution for neutral Volterra integro-differential equation with a weakly singular kernel.The solution of this equati...This paper is concerned with obtaining an approximate solution and an approximate derivative of the solution for neutral Volterra integro-differential equation with a weakly singular kernel.The solution of this equation,even for analytic data,is not smooth on the entire interval of integration.The Jacobi collocation discretization is proposed for the given equation.A rigorous analysis of error bound is also provided which theoretically justifies that both the error of approximate solution and the error of approximate derivative of the solution decay exponentially in L∞norm and weighted L2 norm.Numerical results are presented to demonstrate the effectiveness of the spectral method.展开更多
The z-transform is introduced to analyze a full discretization method fora partial integro-differential equation (PIDE) with a weakly singular kernel. In thismethod, spectral collocation is used for the spatial discre...The z-transform is introduced to analyze a full discretization method fora partial integro-differential equation (PIDE) with a weakly singular kernel. In thismethod, spectral collocation is used for the spatial discretization, and, for the time stepping, the finite difference method combined with the convolution quadrature rule isconsidered. The global stability and convergence properties of complete discretizationare derived and numerical experiments are reported.展开更多
We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the p...We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations.Then,a Legendre-based spectral collocation method is developed for solving the transformed system.Therefore,we can make good use of the advantages of the Gauss quadrature rule.We present the construction and analysis of the collocation method.These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler–Lagrange equations.Two numerical examples are given to confirm the convergence analysis and robustness of the scheme.展开更多
A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of fun...A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm our theoretical analysis.展开更多
文摘This paper proposes numerical methods for solving hybrid weakly singular integro-differential equations of the second kind. The terms in these equations are in the following order: derivative term of a state, integro-differential term of a state with a weakly singular kernel, a state, integral term of a state with a smooth kernel, and force. The original class of weakly singular integro-differential equations of the first kind is derived from aeroelasticity mathematical models. Among the proposed methods, the method for solving linear cases is fully based on previously reported approximation scheme for equations of the first kind. For nonlinear cases, a revised method is proposed. Examples are presented to demonstrate the effectiveness of the proposed methods, and the results indicate that the proposed methods facilitate achieving satisfactory and accurate approximations.
文摘This study presents numerical methods for solving the minimum energies that satisfy typical optimal requirements in the transition between two dynamic systems where each system is governed by a different kind of weakly singular integro-differential equation. The class of weakly singular integro-differential equations originates from mathematical models in aeroelasticity. The proposed numerical methods are based on earlier reported approximation schemes for the equations of the first kind and the second kind. The main result of this study is the development of numerical techniques for determining the stability between two dynamic systems in the minimum energy sense.
文摘In this study, a revised version of some numerical methods for a class of hybrid integro-differential equations with weakly singular kernels (Abel types) is presented. These equations were developed from a class of integro-differential equations of first kind originating from an aeroelasticity problem. By manipulating the bounds of initial conditions with random variations, this study numerically demonstrated the well-posedness properties of the equations. Finally, an assumption of separating variables, allowed for linear splines to be chosen as a basis and for the differentiation and integration of the integro-differential part to be interchanged;hence, a numerical scheme was constructed.
文摘Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel.The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative.The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation(IDE).The proposed scheme is obtained in the form of an algebraic system by reducing the time dependent IDE through unconditionally stable Euler backward method as time integrator.The scheme is validated using a homogeneous and two nonhomogeneous test problems.Conditioning of the system matrix and numerical convergence of the method are analyzed for spatial and temporal domain discretization parameters.Comparison of results of the present approach with Sinc collocation method and quasi-wavelet method are also made.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133,11671157)。
文摘In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.11931003)by the National Natural Science Foundation of China(Grant Nos.41974133,12126325)by the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.CX20200620).
文摘For fractional Volterra integro-differential equations(FVIDEs)with weakly singular kernels,this paper proposes a generalized Jacobi spectral Galerkin method.The basis functions for the provided method are selected generalized Jacobi functions(GJFs),which can be utilized as natural basis functions of spectral methods for weakly singular FVIDEs when appropriately constructed.The developed method's spectral rate of convergence is determined using the L^(∞)-norm and the weighted L^(2)-norm.Numerical results indicate the usefulness of the proposed method.
基金supported by the National Nature Science Foundation of China (10671167)
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
基金Supported by the National Natural Science Foundation of China (60572048)the Natural Science Foundation of Guangdong Province(054006621)
文摘Daubechies interval cally weakly singular Fredholm kind. Utilizing the orthogonality equation is reduced into a linear wavelet is used to solve nurneriintegral equations of the second of the wavelet basis, the integral system of equations. The vanishing moments of the wavelet make the wavelet coefficient matrices sparse, while the continuity of the derivative functions of basis overcomes naturally the singular problem of the integral solution. The uniform convergence of the approximate solution by the wavelet method is proved and the error bound is given. Finally, numerical example is presented to show the application of the wavelet method.
文摘This study presents a numerical method for determining the minimum time required for the states of one class of integro-differential equations of the first kind to reach its attainable region by assuming the forcing terms of the equations as controls. These equations consist of integro-differential parts containing weakly singular kernels. The feasibility of the numerical method is demonstrated by comparing the minimum time and corresponding possible time by using extreme controls to reach the attainable region under different initial conditions.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
文摘This study presents numerical algorithms for solving a class of equations that partly consists of derivatives of the unknown state at previous certain times, as well as an integro-differential term containing a weakly singular kernel. These equations are types of integro-differential equation of the second kind and were originally obtained from an aeroelasticity problem. One of the main contributions of this study is to propose numerical algorithms that do not involve transforming the original equation into the corresponding Volterra equation, but still enable the numerical solution of the original equation to be determined. The feasibility of the proposed numerical algorithm is demonstrated by applying examples in measuring the maximum errors with exact solutions at every computed nodes and calculating the corresponding numerical rates of convergence thereafter.
文摘A numerical method using weak formulation is proposed to solve singularly perturbed differential equations. The numerical method is applied to both linear and nonlinear perturbation problems. A linear differential equation is solved using its weak formulation with a test space composed of exponential functions matching boundary layers. A nonlinear singular perturbation problem is converted into a system of linear differentiation equations. Then each linear differential equation is solved iteratively. The uniform convergence, which is independent of the singular perturbation parameter, is numerically verified.
文摘This article studies the development of two numerical techniques for solving convection-diffusion type partial integro-differential equation(PIDE)with a weakly singular kernel.Cubic trigonometric B-spline(CTBS)functions are used for interpolation in both methods.The first method is CTBS based collocation method which reduces the PIDE to an algebraic tridiagonal system of linear equations.The other method is CTBS based differential quadrature method which converts the PIDE to a system of ODEs by computing spatial derivatives as weighted sum of function values.An efficient tridiagonal solver is used for the solution of the linear system obtained in the first method as well as for determination of weighting coefficients in the second method.An explicit scheme is employed as time integrator to solve the system of ODEs obtained in the second method.The methods are tested with three nonhomogeneous problems for their validation.Stability,computational efficiency and numerical convergence of the methods are analyzed.Comparison of errors in approximations produced by the present methods versus different values of discretization parameters and convection-diffusion coefficients are made.Convection and diffusion dominant cases are discussed in terms of Peclet number.The results are also compared with cubic B-spline collocation method.
文摘We study the existence problem for the equations of first order quasilinearequations in several inpendent variables with singular initial data Lp(P<∞). We the convergence of the Lp(P<∞) bounded approximating sequences generatedby the method of vanishing viscosity. The uniqueness of the generalized solutions whichcan be obtained by the method of vanishing viscosity is also obtained.
基金This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074).
文摘The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel(t−s)^(−μ) with 0<μ<1.In this work,we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth.We provide a rigorous error analysis for the spectral methods,which shows that both the errors of approximate solutions and the errors of approximate derivatives of the solutions decay exponentially in L^(∞)-norm and weighted L^(2)-norm.The numerical examples are given to illustrate the theoretical results.
基金Supported by National Natural Science Foundation of China(10171113 and 10471156)Natural Science Foundation of GuangDong 2004(4009793).
文摘In this article, a degenerate and singular diffusion problem is studied. The existence of solutions is established by parabolic regularization. Some properties of solutions, for instance, asymptotic behavior, are also discussed.
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074)Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009).
文摘This paper is concerned with obtaining an approximate solution and an approximate derivative of the solution for neutral Volterra integro-differential equation with a weakly singular kernel.The solution of this equation,even for analytic data,is not smooth on the entire interval of integration.The Jacobi collocation discretization is proposed for the given equation.A rigorous analysis of error bound is also provided which theoretically justifies that both the error of approximate solution and the error of approximate derivative of the solution decay exponentially in L∞norm and weighted L2 norm.Numerical results are presented to demonstrate the effectiveness of the spectral method.
基金The first author was supported in part by Scientific Research Fund of Hunan Provincial Education Department of China(10C0654)the NSF of China(10971059,11101136)+3 种基金the NSF of Hunan Province,China(10JJ6003)the Grant of Science and Technology Commission of Hunan Province,China(2012FJ4116)the NSF of Hunan University of Technology(2011HZX17)The second author was supported in part by NSF of China(10271046,10971062).
文摘The z-transform is introduced to analyze a full discretization method fora partial integro-differential equation (PIDE) with a weakly singular kernel. In thismethod, spectral collocation is used for the spatial discretization, and, for the time stepping, the finite difference method combined with the convolution quadrature rule isconsidered. The global stability and convergence properties of complete discretizationare derived and numerical experiments are reported.
基金The Russian Foundation for Basic Research(RFBR)Grant No.19-01-00019.
文摘We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations.Then,a Legendre-based spectral collocation method is developed for solving the transformed system.Therefore,we can make good use of the advantages of the Gauss quadrature rule.We present the construction and analysis of the collocation method.These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler–Lagrange equations.Two numerical examples are given to confirm the convergence analysis and robustness of the scheme.
基金This research is partially supported by the GRF grants of Hong Kong Research Grant Council the FRG grants of Hong Kong Baptist University+2 种基金 the US National Science Foundation through grant DMS-0612908 the Ministry of Education of China through the Changjiang Scholars program and Guangdong Provincial Government of China through the "Computational Science Innovative Research Team" program.
文摘A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm our theoretical analysis.