In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously r...In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a semigroup of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we provide some consequences of this study.展开更多
In this paper, we first give the concept of weakly P-inversive semigroup S(P). Then we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. It is proved that there is a bijection be...In this paper, we first give the concept of weakly P-inversive semigroup S(P). Then we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. It is proved that there is a bijection between the strong P-congruences and the P-kernel normal systems. Finally, it is also prove that the lattice of strong P-congruences and the lattice of P-kernel normal systems on S(P) are isomorphic.展开更多
In this paper, the notion of left weakly regular ordered semigroups is introduced. Furthermore, left weakly regular ordered semigroups are characterized by the properties of their left ideals, right ideals and (gener...In this paper, the notion of left weakly regular ordered semigroups is introduced. Furthermore, left weakly regular ordered semigroups are characterized by the properties of their left ideals, right ideals and (generalized) bi-ideals, and also by the properties of their fuzzy left ideals, fuzzy right ideals and fuzzy (generalized) bi-ideals.展开更多
This article is concerned with the ill-posed Cauchy problem associated with a densely defined linear operator A in a Banach space. A family of weak regularizing operators is introduced. If the spectrum of A is contain...This article is concerned with the ill-posed Cauchy problem associated with a densely defined linear operator A in a Banach space. A family of weak regularizing operators is introduced. If the spectrum of A is contained in a sector of right-half complex plane and its resolvent is polynomially bounded, the weak regularization for such ill-posed Cauchy problem can be shown by using the quasi-reversibilky method and regularized semigroups. Finally, an example is given.展开更多
In his paper “On quasi-separative ‘semigroup’s’”, Krasilnikova, Yu. I. and Novikov, B. V. have studied congruences induced by certain relations on a “semigroup”. They further showed that if the “semigroup” is...In his paper “On quasi-separative ‘semigroup’s’”, Krasilnikova, Yu. I. and Novikov, B. V. have studied congruences induced by certain relations on a “semigroup”. They further showed that if the “semigroup” is quasi separative then the induced congruence is a semilattice congruence. In this paper we continue the study of these relations and the induced congruences i.e., the congruences induced by certain relations on ‘‘semigroup’s”. In this paper mainly it is observed that if S is a quasi-separative and regular “semigroup” then the necessary and sufficient condition for to be the smallest semilattice congruence η is obtained.展开更多
Let S° be an inverse semigroup with semilattice biordered set E° of idempotents and E a weakly inverse biordered set with a subsemilattice Ep = { e ∈ E | arbieary f ∈ E, S(f , e) loheain in w(e)} iso...Let S° be an inverse semigroup with semilattice biordered set E° of idempotents and E a weakly inverse biordered set with a subsemilattice Ep = { e ∈ E | arbieary f ∈ E, S(f , e) loheain in w(e)} isomorphic to E° by θ:Ep→E°. In this paper, it is proved that if arbieary f, g ∈E, f ←→ g→→ f°θD^s° g°θand there exists a mapping φ from Ep into the symmetric weakly inverse semigroup P J(E∪ S°) satisfying six appropriate conditions, then a weakly inverse semigroup ∑ can be constructed in P J(S°), called the weakly inverse hull of a weakly inverse system (S°, E, θ, φ) with I(∑) ≌ S°, E(∑) ∽- E. Conversely, every weakly inverse semigroup can be constructed in this way. Furthermore, a sufficient and necessary condition for two weakly inverse hulls to be isomorphic is also given.展开更多
文摘In this work, we prove the existence and uniqueness of the solution of the generalized Schrödinger equation in the periodic distributional space P’. Furthermore, we prove that the solution depends continuously respect to the initial data in P’. Introducing a family of weakly continuous operators, we prove that this family is a semigroup of operators in P’. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we provide some consequences of this study.
基金the Science Research Foundation of Qingdao Technological University(C2002-214)
文摘In this paper, we first give the concept of weakly P-inversive semigroup S(P). Then we describe the strong P-congruences on S(P) in terms of their P-kernel normal systems. It is proved that there is a bijection between the strong P-congruences and the P-kernel normal systems. Finally, it is also prove that the lattice of strong P-congruences and the lattice of P-kernel normal systems on S(P) are isomorphic.
基金The NSF(10961014) of Chinathe NSF(0501332) of Guangdong Province+1 种基金the Excellent Youth Talent Foundation(2009SQRZ149) of Anhui Provincethe Fuyang Normal College Youth Foundation (2008LQ11)
文摘In this paper, the notion of left weakly regular ordered semigroups is introduced. Furthermore, left weakly regular ordered semigroups are characterized by the properties of their left ideals, right ideals and (generalized) bi-ideals, and also by the properties of their fuzzy left ideals, fuzzy right ideals and fuzzy (generalized) bi-ideals.
基金This project was supported by TRAPOYT, the Key Project of Chinese Ministry of Education(104126) the NNSF of China(10371046)
文摘This article is concerned with the ill-posed Cauchy problem associated with a densely defined linear operator A in a Banach space. A family of weak regularizing operators is introduced. If the spectrum of A is contained in a sector of right-half complex plane and its resolvent is polynomially bounded, the weak regularization for such ill-posed Cauchy problem can be shown by using the quasi-reversibilky method and regularized semigroups. Finally, an example is given.
文摘In his paper “On quasi-separative ‘semigroup’s’”, Krasilnikova, Yu. I. and Novikov, B. V. have studied congruences induced by certain relations on a “semigroup”. They further showed that if the “semigroup” is quasi separative then the induced congruence is a semilattice congruence. In this paper we continue the study of these relations and the induced congruences i.e., the congruences induced by certain relations on ‘‘semigroup’s”. In this paper mainly it is observed that if S is a quasi-separative and regular “semigroup” then the necessary and sufficient condition for to be the smallest semilattice congruence η is obtained.
文摘Let S° be an inverse semigroup with semilattice biordered set E° of idempotents and E a weakly inverse biordered set with a subsemilattice Ep = { e ∈ E | arbieary f ∈ E, S(f , e) loheain in w(e)} isomorphic to E° by θ:Ep→E°. In this paper, it is proved that if arbieary f, g ∈E, f ←→ g→→ f°θD^s° g°θand there exists a mapping φ from Ep into the symmetric weakly inverse semigroup P J(E∪ S°) satisfying six appropriate conditions, then a weakly inverse semigroup ∑ can be constructed in P J(S°), called the weakly inverse hull of a weakly inverse system (S°, E, θ, φ) with I(∑) ≌ S°, E(∑) ∽- E. Conversely, every weakly inverse semigroup can be constructed in this way. Furthermore, a sufficient and necessary condition for two weakly inverse hulls to be isomorphic is also given.