期刊文献+
共找到714篇文章
< 1 2 36 >
每页显示 20 50 100
Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments 被引量:2
1
作者 Amani Tahat Jordi Marti +1 位作者 Ali Khwaldeh Kaher Tahat 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期410-421,共12页
In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occu... In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies. 展开更多
关键词 pattern recognition proton transfer chart pattern data mining artificial neural network empiricalvalence bond
下载PDF
Artificial Intelligence for Speech Recognition Based on Neural Networks 被引量:3
2
作者 Takialddin Al Smadi Huthaifa A. Al Issa +1 位作者 Esam Trad Khalid A. Al Smadi 《Journal of Signal and Information Processing》 2015年第2期66-72,共7页
Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to en... Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to ensure the correct spelling of words that sounds the same. Approach: Studying the possibility of designing a software system using one of the techniques of artificial intelligence applications neuron networks where this system is able to distinguish the sound signals and neural networks of irregular users. Fixed weights are trained on those forms first and then the system gives the output match for each of these formats and high speed. The proposed neural network study is based on solutions of speech recognition tasks, detecting signals using angular modulation and detection of modulated techniques. 展开更多
关键词 SPEECH recognition neural networks artificial networks SIGNALS Processing
下载PDF
Automatic Recognition of Analog Modulated Signals Using Artificial Neural Networks
3
作者 Jide Julius Popoola Rex Van Olst 《Computer Technology and Application》 2011年第1期29-35,共7页
This paper presents work on modulated signal recognition using an artificial neural network (ANN) developed using the Python programme language. The study is basically on the analysis of analog modulated signals. Fo... This paper presents work on modulated signal recognition using an artificial neural network (ANN) developed using the Python programme language. The study is basically on the analysis of analog modulated signals. Four of the best-known analog modulation types are considered namely: amplitude modulation (AM), double sideband (DSB) modulation, single sideband (SSB) modulation and frequency modulation (FM). Computer simulations of the four modulated signals are carried out using MATLAB. MATLAB code is used in simulating the analog signals as well as the power spectral density of each of the analog modulated signals. In achieving an accurate classification of each of the modulated signals, extensive simulations are performed for the training of the artificial neural network. The results of the study show accurate and correct performance of the developed automatic modulation recognition with average success rate above 99.5%. 展开更多
关键词 Automatic modulation recognition modulation schemes features extraction key artificial neural network (ANN).
下载PDF
Flame image recognition of alumina rotary kiln by artificial neural network and support vector machine methods 被引量:18
4
作者 张红亮 邹忠 +1 位作者 李劼 陈湘涛 《Journal of Central South University of Technology》 EI 2008年第1期39-43,共5页
Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificia... Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN. 展开更多
关键词 rotary kiln flame image image recognition shape descriptor artificial neural network support vector machine
下载PDF
Mandarin Chinese Tone Recognition with an Artificial Neural Network 被引量:3
5
作者 LEE Chaoyang 《Journal of Otology》 2006年第1期30-34,共5页
Mandarin Chinese tone patterns vary in one of the four ways, i.e, (1) high level; (2) rising; (3) low falling and rising; and (4) high falling. The present study is to examine the efficacy of an artificial neural netw... Mandarin Chinese tone patterns vary in one of the four ways, i.e, (1) high level; (2) rising; (3) low falling and rising; and (4) high falling. The present study is to examine the efficacy of an artificial neural network in recognizing these tone patterns. Speech data were recorded from 12 children (3-6 years of age) and 15 adults. All subjects were native Mandarin Chinese speakers. The fundamental frequencies (F0) of each monosyllabic word of the speech data were extracted with an autocorrelation method. The pitch data(i.e., the F0 contours) were the inputs to a feed-forward backpropagation artificial neural network. The number of inputs to the neural network varied from 1 to 16 and the hidden layer of the network contained neurons that varied from 1 to 16 in number. The output of the network consisted of four neurons representing the four tone patterns of Mandarin Chinese. After being trained with the Levenberg-Marquardt optimization, the neural network was able to successfully classify the tone patterns with an accuracy of about 90% correct for speech samples from both adults and children. The artificial neural network may provide an objective and effective way of assessing tone production in prelingually-deafened children who have received cochlear implants. 展开更多
关键词 tone recognition artificial neural network tone production CHINESE
下载PDF
Efficient Object Segmentation and Recognition Using Multi-Layer Perceptron Networks
6
作者 Aysha Naseer Nouf Abdullah Almujally +2 位作者 Saud S.Alotaibi Abdulwahab Alazeb Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2024年第1期1381-1398,共18页
Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on ... Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their features.The proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their characteristics.Then,two distinct kinds of features are obtained from the segmented images to help identify the objects of interest.An Artificial Neural Network(ANN)is then used to recognize the objects based on their features.Experiments were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested approach.The findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively. 展开更多
关键词 K-region fusion segmentation recognition feature extraction artificial neural network computer vision
下载PDF
A Survey on Chinese Sign Language Recognition:From Traditional Methods to Artificial Intelligence
7
作者 Xianwei Jiang Yanqiong Zhang +1 位作者 Juan Lei Yudong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1-40,共40页
Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign La... Research on Chinese Sign Language(CSL)provides convenience and support for individuals with hearing impairments to communicate and integrate into society.This article reviews the relevant literature on Chinese Sign Language Recognition(CSLR)in the past 20 years.Hidden Markov Models(HMM),Support Vector Machines(SVM),and Dynamic Time Warping(DTW)were found to be the most commonly employed technologies among traditional identificationmethods.Benefiting from the rapid development of computer vision and artificial intelligence technology,Convolutional Neural Networks(CNN),3D-CNN,YOLO,Capsule Network(CapsNet)and various deep neural networks have sprung up.Deep Neural Networks(DNNs)and their derived models are integral tomodern artificial intelligence recognitionmethods.In addition,technologies thatwerewidely used in the early days have also been integrated and applied to specific hybrid models and customized identification methods.Sign language data collection includes acquiring data from data gloves,data sensors(such as Kinect,LeapMotion,etc.),and high-definition photography.Meanwhile,facial expression recognition,complex background processing,and 3D sign language recognition have also attracted research interests among scholars.Due to the uniqueness and complexity of Chinese sign language,accuracy,robustness,real-time performance,and user independence are significant challenges for future sign language recognition research.Additionally,suitable datasets and evaluation criteria are also worth pursuing. 展开更多
关键词 Chinese Sign Language recognition deep neural networks artificial intelligence transfer learning hybrid network models
下载PDF
Wear State Recognition of Drills Based on K-means Cluster and Radial Basis Function Neural Network 被引量:2
8
作者 Xu Yang 《International Journal of Automation and computing》 EI 2010年第3期271-276,共6页
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, d... Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective. 展开更多
关键词 Drill wear state recognition cutting torque signals wavelet packet decomposition (WPD) Welch spectrum energy K-means cluster radial basis function neural network
下载PDF
Prediction of Composition of GaInAsSb Epilayers by MOCVD Using Pattern Recognition and Artificial Neural Network Method
9
作者 严六明 吴伟 彭瑞伍 《Rare Metals》 SCIE EI CAS CSCD 1998年第1期37-41,共5页
he pattern recognition method and artificial neural network method to predict the composition of epilayer of GaInAsSb by MOCVD. It is concluded that a neural network with the composition of the vapor phase and growth ... he pattern recognition method and artificial neural network method to predict the composition of epilayer of GaInAsSb by MOCVD. It is concluded that a neural network with the composition of the vapor phase and growth temperature as training data can predict the composition of the epilayers. Satisfactory pattern recognition and artificial neural network classification results were obtained by using four technical parameters as characteristic features and the epilayers composition as classification criteria. 展开更多
关键词 Pattern recognition artificial neural network MOCVD GAINASSB
下载PDF
MOLTEN SALT PHASE DIAGRAMS CALCULATION USING ARTIFICIAL NEURAL NETWORK OR PATTERN RECOGNITION-BOND PARAMETERS
10
作者 Wang Xueye, Qiu Guanzhou and Wang DianzuoDepartment of Mineral Engineering, Central South University of Technology, Changsha 410083, P. R. ChinaChen NianyiShanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, P. R. Ch 《中国有色金属学会会刊:英文版》 CSCD 1998年第1期143-149,共7页
MOLTENSALTPHASEDIAGRAMSCALCULATIONUSINGARTIFICIALNEURALNETWORKORPATTERNRECOGNITIONBONDPARAMETERS①Part1.Thep... MOLTENSALTPHASEDIAGRAMSCALCULATIONUSINGARTIFICIALNEURALNETWORKORPATTERNRECOGNITIONBONDPARAMETERS①Part1.Thepredictionofthepha... 展开更多
关键词 phase diagram CALCULATION artificial neural network PATTERN recognition bond parameter binary MOLTEN SALT system
下载PDF
SIMULATION AND PREDICTION OF DEBRIS FLOW USING ARTIFICIAL NEURAL NETWORK
11
作者 WANGXie-kang HUANGEr CUIPeng 《Chinese Geographical Science》 SCIE CSCD 2003年第3期262-266,共5页
Debris flow is one of the most destructive phenomena of natural hazards. Recently, major natural hazard, claiming human lives and assets, is due to debris flow in the world. Several practical methods for forecasting d... Debris flow is one of the most destructive phenomena of natural hazards. Recently, major natural hazard, claiming human lives and assets, is due to debris flow in the world. Several practical methods for forecasting debris flow have been proposed, however, the accuracy of these methods is not high enough for practical use because of the stochastic and non-linear characteristics of debris flow. Artificial neural network has proven to be feasible and useful in developing models for nonlinear systems. On the other hand, predicting the future behavior based on a time series of collected historical data is also an important tool in many scientific applications. In this study we present a three-layer feed-forward neural network model to forecast surge of debris flow according to the time series data collected in the Jiangjia Ravine, situated in north part of Yunnan Province of China. The simulation and prediction of debris flow using the proposed approach shows this model is feasible, however, further studies are needed. 展开更多
关键词 debris flow time series artificial neural network
下载PDF
Wear Debris Identification Using Feature Extraction and Neural Network
12
作者 王伟华 马艳艳 +1 位作者 殷勇辉 王成焘 《Journal of Donghua University(English Edition)》 EI CAS 2004年第4期42-45,共4页
A method and results of identification of wear debris using their morphological features are presented. The color images of wear debris were used as initial data. Each particle was characterized by a set of numerical ... A method and results of identification of wear debris using their morphological features are presented. The color images of wear debris were used as initial data. Each particle was characterized by a set of numerical parameters combined by its shape, color and surface texture features through a computer vision system. Those features were used as input vector of artificial neural network for wear debris identification. A radius basis function (RBF) network based model suitable for wear debris recognition was established, and its algorithm was presented in detail. Compared with traditional recognition methods, the RBF network model is faster in convergence, and higher in accuracy. 展开更多
关键词 wear debris CHARACTERIZATION neural network pattern recognition.
下载PDF
An Improved Minimum Distance Method Based on Artificial Neural Networks
13
作者 Qing Li, Deling Zheng, Wenbo Meng Yong Tang Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China E-mail: Li_Qing_2001@263.net 《Journal of University of Science and Technology Beijing》 CSCD 2002年第1期74-77,共4页
MDM (minimum distance method) is a very popular algorithm in staterecognition. But it has a presupposition, that is, the distance within one class must be shorterenough than the distance between classes. When this pre... MDM (minimum distance method) is a very popular algorithm in staterecognition. But it has a presupposition, that is, the distance within one class must be shorterenough than the distance between classes. When this presupposition is not satisfied, the method isno longer valid. In order to overcome the shortcomings of MDM, an improved minimum distance method(IMDM) based on ANN (artificial neural networks) is presented. The simulation results demonstratethat IMDM has two advantages, that is, the rate of recognition is faster and the accuracy ofrecognition is higher compared with MDM. 展开更多
关键词 state recognition minimum distance method artificial neural networks
下载PDF
Face Image Recognition Based on Convolutional Neural Network 被引量:13
14
作者 Guangxin Lou Hongzhen Shi 《China Communications》 SCIE CSCD 2020年第2期117-124,共8页
With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communicati... With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communication,image is widely used as a carrier of communication because of its rich content,intuitive and other advantages.Image recognition based on convolution neural network is the first application in the field of image recognition.A series of algorithm operations such as image eigenvalue extraction,recognition and convolution are used to identify and analyze different images.The rapid development of artificial intelligence makes machine learning more and more important in its research field.Use algorithms to learn each piece of data and predict the outcome.This has become an important key to open the door of artificial intelligence.In machine vision,image recognition is the foundation,but how to associate the low-level information in the image with the high-level image semantics becomes the key problem of image recognition.Predecessors have provided many model algorithms,which have laid a solid foundation for the development of artificial intelligence and image recognition.The multi-level information fusion model based on the VGG16 model is an improvement on the fully connected neural network.Different from full connection network,convolutional neural network does not use full connection method in each layer of neurons of neural network,but USES some nodes for connection.Although this method reduces the computation time,due to the fact that the convolutional neural network model will lose some useful feature information in the process of propagation and calculation,this paper improves the model to be a multi-level information fusion of the convolution calculation method,and further recovers the discarded feature information,so as to improve the recognition rate of the image.VGG divides the network into five groups(mimicking the five layers of AlexNet),yet it USES 3*3 filters and combines them as a convolution sequence.Network deeper DCNN,channel number is bigger.The recognition rate of the model was verified by 0RL Face Database,BioID Face Database and CASIA Face Image Database. 展开更多
关键词 convolutional neural network face image recognition machine learning artificial intelligence multilayer information fusion
下载PDF
A Survey on Artificial Intelligence in Posture Recognition 被引量:4
15
作者 Xiaoyan Jiang Zuojin Hu +1 位作者 Shuihua Wang Yudong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期35-82,共48页
Over the years,the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded.The purpose o... Over the years,the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded.The purpose of this paper is to introduce the latest methods of posture recognition and review the various techniques and algorithms of posture recognition in recent years,such as scale-invariant feature transform,histogram of oriented gradients,support vectormachine(SVM),Gaussian mixturemodel,dynamic time warping,hiddenMarkovmodel(HMM),lightweight network,convolutional neural network(CNN).We also investigate improved methods of CNN,such as stacked hourglass networks,multi-stage pose estimation networks,convolutional posemachines,and high-resolution nets.The general process and datasets of posture recognition are analyzed and summarized,and several improved CNNmethods and threemain recognition techniques are compared.In addition,the applications of advanced neural networks in posture recognition,such as transfer learning,ensemble learning,graph neural networks,and explainable deep neural networks,are introduced.It was found that CNN has achieved great success in posture recognition and is favored by researchers.Still,a more in-depth research is needed in feature extraction,information fusion,and other aspects.Among classification methods,HMM and SVM are the most widely used,and lightweight network gradually attracts the attention of researchers.In addition,due to the lack of 3Dbenchmark data sets,data generation is a critical research direction. 展开更多
关键词 Posture recognition artificial intelligence machine learning deep neural network deep learning transfer learning feature extraction CLASSIFICATION
下载PDF
Establishing and validating a spotted tongue recognition and extraction model based on multiscale convolutional neural network 被引量:7
16
作者 PENG Chengdong WANG Li +3 位作者 JIANG Dongmei YANG Nuo CHEN Renming DONG Changwu 《Digital Chinese Medicine》 2022年第1期49-58,共10页
Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligenc... Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligence(AI)to study the spotted tongue recognition of traditional Chinese medicine(TCM).Methods A model of spotted tongue recognition and extraction is designed,which is based on the principle of image deep learning and instance segmentation.This model includes multiscale feature map generation,region proposal searching,and target region recognition.Firstly,deep convolution network is used to build multiscale low-and high-abstraction feature maps after which,target candidate box generation algorithm and selection strategy are used to select high-quality target candidate regions.Finally,classification network is used for classifying target regions and calculating target region pixels.As a result,the region segmentation of spotted tongue is obtained.Under non-standard illumination conditions,various tongue images were taken by mobile phones,and experiments were conducted.Results The spotted tongue recognition achieved an area under curve(AUC)of 92.40%,an accuracy of 84.30%with a sensitivity of 88.20%,a specificity of 94.19%,a recall of 88.20%,a regional pixel accuracy index pixel accuracy(PA)of 73.00%,a mean pixel accuracy(m PA)of73.00%,an intersection over union(Io U)of 60.00%,and a mean intersection over union(mIo U)of 56.00%.Conclusion The results of the study verify that the model is suitable for the application of the TCM tongue diagnosis system.Spotted tongue recognition via multiscale convolutional neural network(CNN)would help to improve spot classification and the accurate extraction of pixels of spot area as well as provide a practical method for intelligent tongue diagnosis of TCM. 展开更多
关键词 Spotted tongue recognition and extraction The feature of tongue Instance segmentation Multiscale convolutional neural network(CNN) Tongue diagnosis system artificial intelligence(AI)
下载PDF
Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition 被引量:1
17
作者 Yi-Chun Lai Shu-Yin Chiang +1 位作者 Yao-Chiang Kan Hsueh-Chun Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期3783-3803,共21页
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr... Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications. 展开更多
关键词 Human activity recognition artificial intelligence support vector machine random forest adaptive neuro-fuzzy inference system convolution neural network recursive feature elimination
下载PDF
Artificial Neural Network Applied to Quality Diagnosis
18
作者 Yang Xu(Shandong Architectural and Civil Engineering Institute, Jinan 250014, P. R. ChinaWang Xingyuan(Shandong University of Technology, Jinan 250061, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1997年第2期73-80,共8页
In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in ... In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in the area of product quality diagnosis, prediction and control, state supervision and classification, factor recognition, and expert system based diagnosis, then set up the ANN models and expert system for quality forecasting, monitoring and diagnosing. We point out that combining ANN with other techniques will have the broad development and application of perspectives. Finally, the paper gives out some practical applications for the models and the system. 展开更多
关键词 artificial neural network (ANN) Quality diagnosis Pattern recognition Expert system.
下载PDF
Recognition of Urdu Handwritten Alphabet Using Convolutional Neural Network (CNN)
19
作者 Gulzar Ahmed Tahir Alyas +4 位作者 Muhammad Waseem Iqbal Muhammad Usman Ashraf Ahmed Mohammed Alghamdi Adel A.Bahaddad Khalid Ali Almarhabi 《Computers, Materials & Continua》 SCIE EI 2022年第11期2967-2984,共18页
Handwritten character recognition systems are used in every field of life nowadays,including shopping malls,banks,educational institutes,etc.Urdu is the national language of Pakistan,and it is the fourth spoken langua... Handwritten character recognition systems are used in every field of life nowadays,including shopping malls,banks,educational institutes,etc.Urdu is the national language of Pakistan,and it is the fourth spoken language in the world.However,it is still challenging to recognize Urdu handwritten characters owing to their cursive nature.Our paper presents a Convolutional Neural Networks(CNN)model to recognize Urdu handwritten alphabet recognition(UHAR)offline and online characters.Our research contributes an Urdu handwritten dataset(aka UHDS)to empower future works in this field.For offline systems,optical readers are used for extracting the alphabets,while diagonal-based extraction methods are implemented in online systems.Moreover,our research tackled the issue concerning the lack of comprehensive and standard Urdu alphabet datasets to empower research activities in the area of Urdu text recognition.To this end,we collected 1000 handwritten samples for each alphabet and a total of 38000 samples from 12 to 25 age groups to train our CNN model using online and offline mediums.Subsequently,we carried out detailed experiments for character recognition,as detailed in the results.The proposed CNN model outperformed as compared to previously published approaches. 展开更多
关键词 Urdu handwritten text recognition handwritten dataset convolutional neural network artificial intelligence machine learning deep learning
下载PDF
Artificial Neural Network for Websites Classification with Phishing Characteristics
20
作者 Ricardo Pinto Ferreira Andréa Martiniano +4 位作者 Domingos Napolitano Marcio Romero Dacyr Dante De Oliveira Gatto Edquel Bueno Prado Farias Renato José Sassi 《Social Networking》 2018年第2期97-109,共13页
Several threats are propagated by malicious websites largely classified as phishing. Its function is important information for users with the purpose of criminal practice. In summary, phishing is a technique used on t... Several threats are propagated by malicious websites largely classified as phishing. Its function is important information for users with the purpose of criminal practice. In summary, phishing is a technique used on the Internet by criminals for online fraud. The Artificial Neural Networks (ANN) are computational models inspired by the structure of the brain and aim to simu-late human behavior, such as learning, association, generalization and ab-straction when subjected to training. In this paper, an ANN Multilayer Per-ceptron (MLP) type was applied for websites classification with phishing cha-racteristics. The results obtained encourage the application of an ANN-MLP in the classification of websites with phishing characteristics. 展开更多
关键词 artificial INTELLIGENCE artificial neural Network Pattern recognition PHISHING CHARACTERISTICS SOCIAL Engineering
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部