Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the anal...Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the analyses of cutter motion in the rock breaking process and trajectory of rock breaking point on the cutter edge in rocks. The analytical expressions of the length of face along which the breaking point moves and the length of spiral trajectory of the maximum penetration point are derived. Through observation of rock breaking process of disc cutters as well as analysis of disc rock interaction, the following concepts are proposed: the arc length theory of predicting wear extent of inner and center cutters, and the spiral theory of predicting wear extent of gage and transition cutters. Data obtained from5621 m-long Qinling tunnel reveal that among 39 disc cutters, the relative errors between cumulatively predicted and measured wear values for nine cutters are larger than 20%, while approximately 76.9% of total cutters have the relative errors less than 20%. The proposed method could offer a new attempt to predict the disc cutter's wear extent and changing time.展开更多
Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length...Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians’ experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters’ life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51475163)the National Hightech R&D Program of China(Grant No.2012AA041803)
文摘Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine(TBM) is always a challenging issue. In this paper, we focus on the analyses of cutter motion in the rock breaking process and trajectory of rock breaking point on the cutter edge in rocks. The analytical expressions of the length of face along which the breaking point moves and the length of spiral trajectory of the maximum penetration point are derived. Through observation of rock breaking process of disc cutters as well as analysis of disc rock interaction, the following concepts are proposed: the arc length theory of predicting wear extent of inner and center cutters, and the spiral theory of predicting wear extent of gage and transition cutters. Data obtained from5621 m-long Qinling tunnel reveal that among 39 disc cutters, the relative errors between cumulatively predicted and measured wear values for nine cutters are larger than 20%, while approximately 76.9% of total cutters have the relative errors less than 20%. The proposed method could offer a new attempt to predict the disc cutter's wear extent and changing time.
基金Supported by National Natural Science Foundation of China (Grant No.51075147)National Hi-tech Research and Development Program of China (863 Program,Grant No.2012AA041803)
文摘Wear is a major factor of disc cutters’ failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians’ experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters’ life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters.