The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc...The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.展开更多
A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the s...A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the substrate,and functional coatings that contained bioceramics and Ag ions were prepared for coating on TiO_(2)nanotubes(diameter:(80±20)nm and(150±40)nm)using anodization,deposition,and spin-coating methods.The effects of the bioceramics(nano-β-tricalcium phosphate,microhydroxyapatite(micro-HA),and meso-CaSiO_(3))and Ag nanoparticles(size:(50±20)nm)on the antibacterial activity and the tribocorrosion,corrosion,and early in vitro osteogenic behaviors of the nanotubes were investigated.The tribocorrosion and corrosion results showed that the wear rate and corrosive rate were highly dependent on the features of the nanotube surface.Micro-HA showed great wear resistance with a wear rate of(1.26±0.06)×10^(−3)mm^(3)/(N·m)due to adhesive and abrasivewear.Meso-CaSiO_(3)showed enhanced cell adhesion,proliferation,and alkaline phosphatase activity.The coatings that contained nano-Ag exhibited good antibacterial activity with an antibacterial rate of≥89.5%against Escherichia coli.These findings indicate that hybrid coatings may have the potential to accelerate osteogenesis.展开更多
TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear r...TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear resistance were analyzed. The results suggest that the TiN-matrix composite coating is well bonded with the substrate. The micro-hardness measured decreases with the increase of applied test loads. And the micro-hardness of the coating under heavy loads is relatively high. The TiN-matrix composite coating exhibits an excellent corrosion resistance in 3.5% NaC1 solution. The corrosion potential of coating is positive and the passivation zone is broad, which indicates that the TiN-matrix composite coating is stable in the electrolyte and provides excellent protection to the substrate. The wear coefficient of the coating under all loads maintains at 0.49-0.50. The wear mechanism of the coating is revealed to be three-body abrasive wear. Yet the failure forms of TiN-matrix composite coating under different loads have an obvious difference. The failure form of coating under light loads is particle spallation due to the stress concentration while that of coating under heavy loads is crackin~ between inter-lamellae.展开更多
In order to study the effect of element Nb on the microstructure and properties of the biomedical β-type Ti-Mo based alloys,Ti-15Mo-xNb(x=5,10,15 and 20 in %) alloys were investigated.The dry wear resistance of β-...In order to study the effect of element Nb on the microstructure and properties of the biomedical β-type Ti-Mo based alloys,Ti-15Mo-xNb(x=5,10,15 and 20 in %) alloys were investigated.The dry wear resistance of β-type Ti-15Mo-xNb alloys against Gr15 ball was investigated on CJS111A ball-disk wear instrument.Experimental results indicate that crystal structure and morphology of the Ti-15Mo-xNb alloys are sensitive to their Nb contents.Ti-15Mo-xNb alloys match those for β phase peaks and no any phases are found.The Vickers hardness values of all the Ti-15Mo-xNb alloys are higher than HV200.The compression yield strength of the Ti-15Mo-5Nb alloy is the lowest and that of the Ti-15Mo-10Nb alloy is the highest.For all the Ti-15Mo-xNb alloys,the friction coefficient is not constant but takes a higher value.In dry condition,SEM study reveals deep parallel scars on the wear surfaces of all the Ti-15Mo-xNb alloys under different loads.The friction coefficient of the Ti-15Mo-5Nb alloy under 1 N is the lowest.The wear principal mechanism for Ti-15Mo-xNb alloys is adhesive wear.展开更多
In order to improve the wear resistance properties of copper substrate, a layer of electroplated nickel was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack...In order to improve the wear resistance properties of copper substrate, a layer of electroplated nickel was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack cementation process with a slurry pack cementation mixture composed of TiO2 as titanizing source, pure Al powder as aluminzing source and also a reducer for titanizing, an activator of NH4Cl and albumen (egg white) as cohesive agent. The Ti-Al coating was fabricated on the surface of electro-deposited nickel layer on copper matrix followed by the slurry pack cementation process. The effects of slurry pack cementation temperature on the microstructures and wear resistance of Ti-Al coating were studied. The results show that the microstructure of the coating changed from NiAl+Ni3(Ti,Al) to NiAl +Ni3(Ti,Al)+Ni4Ti3 to Ni4Ti3+NiAl, and to NiAl+Ni3(Ti,Al)+NiTi with slurry pack cementation temperature ranging from 800 ℃ to 950 ℃ in 12 h. The friction coefficient of Ti-Al coating decreased and the hardness increased with increasing the slurry pack cementation temperature. The minimum friction coefficient was 1/3 and the minimum hardness was 5 times larger than that of pure copper.展开更多
The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increa...The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied.展开更多
The welding property of TiB2/ZL101 composite was investigated using electron beam(EB) welding experimental system with a function generator.The fine defect-free welding seam was obtained under proper processing para...The welding property of TiB2/ZL101 composite was investigated using electron beam(EB) welding experimental system with a function generator.The fine defect-free welding seam was obtained under proper processing parameters and scanning rate.The reinforcement particles TiB2 distributed homogeneously in welding seam without any segregation.The tensile results show that fracture occurs at the base metal and elastic modulus increases compared with base metal.Wear resistance of welding seam is improved greatly compared with base metal.The results show that the TiB2/ZL101 composite can be successfully welded by EB technology.展开更多
Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-Si...Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-SiC and RE-Ni-W-P-SiC composite coatings. On the contrary, the addition of PTFE in the bath decreases cathodic deposition current density of the coatings. The current density increases a little when the amount of RE is 7-9g/l; however, the current density increases greatly when the amount of RE is increased to 11-13g/l. Bui ij the amount of RE is raised further, the current density decreases. Hardness and wear resistance of RE-Ni-W-P-SiC composite coating have been studied, and the results show that the hardness and wear resistance of RE-Ni-W-P-SiC composite coating increase with increasing heat treatment tempera-ture, which reach peak values at 400℃; while the hardness and wear resistance of the coating decrease with the rise of heat treated temperature continuously.展开更多
In the present study,the effects of process parameters(output voltage x,nitrogen flux l and specific strengthening time s)on the microstructure and wear resistance properties of TiN coatings prepared by electrospark d...In the present study,the effects of process parameters(output voltage x,nitrogen flux l and specific strengthening time s)on the microstructure and wear resistance properties of TiN coatings prepared by electrospark deposition(ESD)were investigatedsystematically.The microstructure of the coatings was characterized for thickness(TOC),content of TiN(CON)and porosity(POC).A statistical model was developed to identify the significant factors affecting the microstructure and wear resistance of the coatings.The results show that the output voltage x and nitrogen flux l present significant effects on majority of the evaluation indexes such asTOC,friction coefficient(COF)and wear mass loss(Id),while the specific strengthening time s has a significant effect on POC and asmall effect on the other indexes.The optimal process parameters were obtained as follows:output voltage(x,60V),nitrogen flux(l,15L/min)and specific strengthening time(s,3min/cm2).The variation of wear mass loss(Id)by the variation of the outputvoltage(x)and nitrogen flux(l)is attributed to the change of wear mechanisms of TiN coatings.The main wear mechanism of TiNcoating prepared under optimal process parameters is micro-cutting wear accompanied by micro-fracture wear.展开更多
Ceramic coating was deposited on TiAl alloy substrate by micro-arc oxidation(MAO)in a silicate-aluminate electrolyte solution with additives including sodium citrate,graphite and sodium tungstate.The microstructures a...Ceramic coating was deposited on TiAl alloy substrate by micro-arc oxidation(MAO)in a silicate-aluminate electrolyte solution with additives including sodium citrate,graphite and sodium tungstate.The microstructures and compositions were analyzed by SEM,EDX and XRD.The corrosion and wear properties of the coatings were investigated by potentiodynamic polarization and ball-on-disc wear test,respectively.The results show that the MAO coatings consist of WO3,Ti2O3,graphite and Al2O3 besides Al2TiO5 and Al2SiO5.With additives in the electrolyte,the working voltage at the micro-arc discharge stage decreases,and the ceramic coating gets smoother and more compact.The corrosion current density of MAO coating is much lower than that of TiAl substrate.It can be reduced from 9.81×10-8A/cm 2to 3.02×10-10A/cm 2 .The MAO coatings composed of hard Al2O3,WO3 and Ti2O3 obviously improve the wear resistance of TiAl alloy.The wear rate is-3.27×10-7g/(N·m).展开更多
The effect of reinforcement on the wear mechanism of metal matrix composites (MMCs) was investigated by considering different parameters, such as sliding distance (6 km), pressure (0.14-1.1 MPa) and sliding spe...The effect of reinforcement on the wear mechanism of metal matrix composites (MMCs) was investigated by considering different parameters, such as sliding distance (6 km), pressure (0.14-1.1 MPa) and sliding speed (230-1480 r/min). The wear mechanisms of an MMC and the corresponding matrix material under similar experimental conditions were compared on a pin-on-disc wear machine. The pins were made of 6061 aluminum matrix alloy and 6061 aluminum matrix composite reinforced with 10% Al2O3 (volume fraciton) particles (6-18μm). The disc was made of steel. The major findings are as follows: the MMC shows much higher wear resistance than the corresponding matrix material; unlike that of matrix material, the wear of MMC is very much linear and possible to predict easily; the wear mechanism is similar for both materials other than the three-body abrasion in the case of MMC; the reinforced particles resist the abrasion and restrict the deformation of MMCs which causes high resistance to wear. These results reveal the roles of the reinforcement particles on the wear resistance of MMCs and provide a useful guide for a better control of their wear.展开更多
In order to investigate the microstructure of TiN and TiAlN coatings and their effect on the wear resistance of Mg alloy, TiN and TiAlN coatings were deposited on AZ91 magnesium alloy by multi-arc ion plating technolo...In order to investigate the microstructure of TiN and TiAlN coatings and their effect on the wear resistance of Mg alloy, TiN and TiAlN coatings were deposited on AZ91 magnesium alloy by multi-arc ion plating technology.TiN and Ti70Al30N coatings were prepared on the substrate,respectively,which exhibited dark golden color and compact microstructure.The microstructures of TiN and Ti70Al30N coatings were investigated by X-ray diffractometry(XRD)and scanning electron microscopy(SEM).The micro-hardness and wear resistance of TiN and Ti70Al30N coatings were investigated in comparison with the uncoated AZ91 alloy. The XRD peaks assigned to TiN and TiAlN phases are found.The hardness of TiN coatings is two times as high as that of AZ91 alloy, and Ti70Al30N coating exhibits the highest hardness.The wear resistance of the hard coatings increases obviously as result of their high hardness.展开更多
High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research ...High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 ℃ to 1050 ℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 ℃, followed by a subsequent 2 h tempering at 400 ℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.展开更多
WC-8wt.% Co cemented carbides with varied nano-Al 2 O 3 and nano-ZrO 2 contents were prepared respectively following conventional powder metallurgical procedures. Effects of nano-Al 2 O 3 and nano-ZrO 2 on the microst...WC-8wt.% Co cemented carbides with varied nano-Al 2 O 3 and nano-ZrO 2 contents were prepared respectively following conventional powder metallurgical procedures. Effects of nano-Al 2 O 3 and nano-ZrO 2 on the microstructure, behavior, and abrasive wear resistance were investigated. The result shows that a finer and more homogenous microstructure can be achieved by increasing nano-Al 2 O 3 , and increasing nano-ZrO 2 makes the microstructure more refined. Nano-Al 2 O 3 and nano-ZrO 2 could both help to give increased hardness. Transverse rupture strength is higher if the above nano-oxides are doped appropriately, whereas excess addition is deleterious. Abrasive wear resistance presents different variations with respect to increasing nano-Al 2 O 3 and nano-ZrO 2 . By contrast, increasing nano-ZrO 2 enhances the abrasive wear resistance more effectively than increasing nano-Al 2 O 3 . The influence of the two nano-oxides contents on the abrasive wear resistance does not almost vary with wear time, and the optimum addition level of nano-Al 2 O 3 in WC-8% Co cemented carbide is 0.3 wt.% from the stand of abrasive wear resistance. In addition, both of the nano-oxides can retard the increase of wear rate in long-term abrasive wear.展开更多
The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. T...The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, micro-hardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization in-dicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidifica-tion. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3-3.1 times higher than the hardness of the substrate. The wear re-sistance of NCI was also significantly improved after the PTA remelting treatment.展开更多
Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of th...Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobait-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3 leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties.展开更多
The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the ...The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the Fe40Mn40Cr10Co10/TiC composites were individually investigated. It was found that TiC particles homogenously distributed in the Fe40Mn40Cr10Co10/TiC composite after being sintered at 1373 K for 15 min. Meanwhile, grain refinement was observed in the as-sintered composite. Compared with the pure Fe40Mn40Cr10Co10 medium entropy alloy (MEA) matrix grain, addition of 10% TiC particles resulted in an increase in the compressive strength from 1.571 to 2.174 GPa, and the hardness from HV 320 to HV 872. Wear resistance results demonstrated that the friction coefficient, wear depth and width of the composite decreased in comparison with the Fe40Mn40Cr10Co10 MEA matrix. Excellent mechanical properties and wear resistance could offer the Fe40Mn40Cr10Co10/TiC composite a very promising candidate for engineering applications.展开更多
Laser cladding nickel-based alloy coating (Ni60) and nickel-based composite coating doped with WC particles by 35 % (WCp/Ni) were produced on the low-carbon steel substrate by CO2 continuous wave laser with power ...Laser cladding nickel-based alloy coating (Ni60) and nickel-based composite coating doped with WC particles by 35 % (WCp/Ni) were produced on the low-carbon steel substrate by CO2 continuous wave laser with power of 5 kW using the injected powder technique. The effect of laser power on microstructure and wear resistance of laser cladding WCp/Ni cermet coating was investigated. The WCp/Ni alloy coating with evenly distributed WC ceramic phases and the better bond with the substrate alloy was obtained at a power of 2.2 kW. Diffusion solution reaction happened between WC particles and the substrate alloy during laser cladding, and led to the formation of block rich-tungsten carbide on the edges of the WC particles, especially at higher power. The WCp/Ni alloy coating consists of the undissolved WC particles, the block or dendritic rich-tungsten carbide, the bar-like rich-chromium carbide, and dendrite solid solution and eutectic structure among the carbides. Microhardness and wear resistance of the WCp/Ni coating at different powers were much higher or better than those of Ni60 alloy coating, and the best results were obtained at power of 2.2 kW.展开更多
The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compare...The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compared with each other. In the as-cast condition, the matrix of VCS and compocast processed composites exhibited globular and dendritric structures, respectively. While a more uniform distribution of SiC particulates in the matrix alloy as well as higher hardness values were obtained for the VCS processed samples, the composites produced via compocasting exhibited less porosity. The increased SiC content (up to 20% in volume fraction) resulted in a more uniform distribution of SiC particles within the matrix alloy and improved wear resistance for both the composite series. However, for the VCS processed composites, the increased SiC content, resulted in the decreased size and shape factor of globules as well as better tribological properties when compared with compocast composites. It was concluded that the improved properties of the VCS processed composites when compared with their compocast counterparts was a consequence of a more uniform distribution of SiC particulates in the matrix alloy as well as the globular microstructure generated during the VCS process.展开更多
A low-alloy gray cast iron containing hard carbide-forming elements, such as vanadium and chromium, was cast by sand mould casting. Its wear resistance was compared with that of an untreated gray cast iron. Three diff...A low-alloy gray cast iron containing hard carbide-forming elements, such as vanadium and chromium, was cast by sand mould casting. Its wear resistance was compared with that of an untreated gray cast iron. Three different loading conditions were tested under a con- stant speed. It was observed that this alloy could reduce the wear loss of standard gray cast iron by up to 89%, which was much greater than what was achieved in previous reports. Scanning electron microscopy (SEM) was used to determine the predominant wear mechanism of both the alloys. In a mild wear regime, the oxidative mechanism was predominant; however, in a severe wear regime, this mechanism was not predominant and the adhesive mechanism was involved. EDX analysis was conducted to evaluate the quantitative amounts of elements in the tribochemical films formed on the wear tracks.展开更多
基金the National Natural Science Foundation of China(Grant number 51771178)Shaanxi Outstanding Youth Fund project(Grant number 2021JC-45)+2 种基金Key international cooperation projects in Shaanxi Province(Grant number 2020KWZ-007)the Major Program of Science and Technology in Shaanxi Province(Grant number20191102006)Open Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant number 32115019)。
文摘The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.
基金supported by the National Natural Science Foundation of China(Nos.52071346,52111530193,and 52274387)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(No.2023JJ10075)+3 种基金the Hunan Provincial Natural Science Foundation of China(No.2021JJ30846)the Central South University Research Program of Advanced Interdisciplinary Studies(No.2023QYJC038)the Funding for the Medical Engineering Cross Disciplinary Project at Shanghai Jiao Tong University,and the Fundamental Research Funds for the Central Universities of Central South University(No.2022ZZTS0402)The authors would also thank Sinoma Institute of Materials Research(Guangzhou)Co.,Ltd.for the assistance with the TEM characterization.
文摘A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the substrate,and functional coatings that contained bioceramics and Ag ions were prepared for coating on TiO_(2)nanotubes(diameter:(80±20)nm and(150±40)nm)using anodization,deposition,and spin-coating methods.The effects of the bioceramics(nano-β-tricalcium phosphate,microhydroxyapatite(micro-HA),and meso-CaSiO_(3))and Ag nanoparticles(size:(50±20)nm)on the antibacterial activity and the tribocorrosion,corrosion,and early in vitro osteogenic behaviors of the nanotubes were investigated.The tribocorrosion and corrosion results showed that the wear rate and corrosive rate were highly dependent on the features of the nanotube surface.Micro-HA showed great wear resistance with a wear rate of(1.26±0.06)×10^(−3)mm^(3)/(N·m)due to adhesive and abrasivewear.Meso-CaSiO_(3)showed enhanced cell adhesion,proliferation,and alkaline phosphatase activity.The coatings that contained nano-Ag exhibited good antibacterial activity with an antibacterial rate of≥89.5%against Escherichia coli.These findings indicate that hybrid coatings may have the potential to accelerate osteogenesis.
基金Project(KFJJ10-15M) supported by the Open Fund of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,ChinaProject(E2013208101) supported by the Nature Science Fund of Hebei Province,China+1 种基金Project(Z2012100) supported by Colleges and Universities Science and Technology Research Fund of Hebei Province,ChinaProject supported by the Outstanding Youth Fund of Hebei University of Science and Technology,China
文摘TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear resistance were analyzed. The results suggest that the TiN-matrix composite coating is well bonded with the substrate. The micro-hardness measured decreases with the increase of applied test loads. And the micro-hardness of the coating under heavy loads is relatively high. The TiN-matrix composite coating exhibits an excellent corrosion resistance in 3.5% NaC1 solution. The corrosion potential of coating is positive and the passivation zone is broad, which indicates that the TiN-matrix composite coating is stable in the electrolyte and provides excellent protection to the substrate. The wear coefficient of the coating under all loads maintains at 0.49-0.50. The wear mechanism of the coating is revealed to be three-body abrasive wear. Yet the failure forms of TiN-matrix composite coating under different loads have an obvious difference. The failure form of coating under light loads is particle spallation due to the stress concentration while that of coating under heavy loads is crackin~ between inter-lamellae.
基金Project(20080440850) supported by China Postdoctoral Science FoundationProject(ZJY0605-02) supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(HIT.NSRIF.2012002) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to study the effect of element Nb on the microstructure and properties of the biomedical β-type Ti-Mo based alloys,Ti-15Mo-xNb(x=5,10,15 and 20 in %) alloys were investigated.The dry wear resistance of β-type Ti-15Mo-xNb alloys against Gr15 ball was investigated on CJS111A ball-disk wear instrument.Experimental results indicate that crystal structure and morphology of the Ti-15Mo-xNb alloys are sensitive to their Nb contents.Ti-15Mo-xNb alloys match those for β phase peaks and no any phases are found.The Vickers hardness values of all the Ti-15Mo-xNb alloys are higher than HV200.The compression yield strength of the Ti-15Mo-5Nb alloy is the lowest and that of the Ti-15Mo-10Nb alloy is the highest.For all the Ti-15Mo-xNb alloys,the friction coefficient is not constant but takes a higher value.In dry condition,SEM study reveals deep parallel scars on the wear surfaces of all the Ti-15Mo-xNb alloys under different loads.The friction coefficient of the Ti-15Mo-5Nb alloy under 1 N is the lowest.The wear principal mechanism for Ti-15Mo-xNb alloys is adhesive wear.
基金Projects(YKJ201203,CKJB201205)supported by the Nanjing Institute of Technology,China
文摘In order to improve the wear resistance properties of copper substrate, a layer of electroplated nickel was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack cementation process with a slurry pack cementation mixture composed of TiO2 as titanizing source, pure Al powder as aluminzing source and also a reducer for titanizing, an activator of NH4Cl and albumen (egg white) as cohesive agent. The Ti-Al coating was fabricated on the surface of electro-deposited nickel layer on copper matrix followed by the slurry pack cementation process. The effects of slurry pack cementation temperature on the microstructures and wear resistance of Ti-Al coating were studied. The results show that the microstructure of the coating changed from NiAl+Ni3(Ti,Al) to NiAl +Ni3(Ti,Al)+Ni4Ti3 to Ni4Ti3+NiAl, and to NiAl+Ni3(Ti,Al)+NiTi with slurry pack cementation temperature ranging from 800 ℃ to 950 ℃ in 12 h. The friction coefficient of Ti-Al coating decreased and the hardness increased with increasing the slurry pack cementation temperature. The minimum friction coefficient was 1/3 and the minimum hardness was 5 times larger than that of pure copper.
文摘The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied.
基金Project(11ZR1417500) supported by Natural Science Foundation of Shanghai,China
文摘The welding property of TiB2/ZL101 composite was investigated using electron beam(EB) welding experimental system with a function generator.The fine defect-free welding seam was obtained under proper processing parameters and scanning rate.The reinforcement particles TiB2 distributed homogeneously in welding seam without any segregation.The tensile results show that fracture occurs at the base metal and elastic modulus increases compared with base metal.Wear resistance of welding seam is improved greatly compared with base metal.The results show that the TiB2/ZL101 composite can be successfully welded by EB technology.
基金The project was supported by Yunnan Provincial Natural Science Foundation (95B11-5).
文摘Cathodic deposition current density of the composite coatings increases when SiC par-ticles and rare earth (RE) were added in the bath, which is profitable for Ni- W-P alloy to deposit in the cathod, forming Ni-W-P-SiC and RE-Ni-W-P-SiC composite coatings. On the contrary, the addition of PTFE in the bath decreases cathodic deposition current density of the coatings. The current density increases a little when the amount of RE is 7-9g/l; however, the current density increases greatly when the amount of RE is increased to 11-13g/l. Bui ij the amount of RE is raised further, the current density decreases. Hardness and wear resistance of RE-Ni-W-P-SiC composite coating have been studied, and the results show that the hardness and wear resistance of RE-Ni-W-P-SiC composite coating increase with increasing heat treatment tempera-ture, which reach peak values at 400℃; while the hardness and wear resistance of the coating decrease with the rise of heat treated temperature continuously.
文摘In the present study,the effects of process parameters(output voltage x,nitrogen flux l and specific strengthening time s)on the microstructure and wear resistance properties of TiN coatings prepared by electrospark deposition(ESD)were investigatedsystematically.The microstructure of the coatings was characterized for thickness(TOC),content of TiN(CON)and porosity(POC).A statistical model was developed to identify the significant factors affecting the microstructure and wear resistance of the coatings.The results show that the output voltage x and nitrogen flux l present significant effects on majority of the evaluation indexes such asTOC,friction coefficient(COF)and wear mass loss(Id),while the specific strengthening time s has a significant effect on POC and asmall effect on the other indexes.The optimal process parameters were obtained as follows:output voltage(x,60V),nitrogen flux(l,15L/min)and specific strengthening time(s,3min/cm2).The variation of wear mass loss(Id)by the variation of the outputvoltage(x)and nitrogen flux(l)is attributed to the change of wear mechanisms of TiN coatings.The main wear mechanism of TiNcoating prepared under optimal process parameters is micro-cutting wear accompanied by micro-fracture wear.
基金Project(2006KG03) supported by the Science and Technology Program of Shannxi Province, China
文摘Ceramic coating was deposited on TiAl alloy substrate by micro-arc oxidation(MAO)in a silicate-aluminate electrolyte solution with additives including sodium citrate,graphite and sodium tungstate.The microstructures and compositions were analyzed by SEM,EDX and XRD.The corrosion and wear properties of the coatings were investigated by potentiodynamic polarization and ball-on-disc wear test,respectively.The results show that the MAO coatings consist of WO3,Ti2O3,graphite and Al2O3 besides Al2TiO5 and Al2SiO5.With additives in the electrolyte,the working voltage at the micro-arc discharge stage decreases,and the ceramic coating gets smoother and more compact.The corrosion current density of MAO coating is much lower than that of TiAl substrate.It can be reduced from 9.81×10-8A/cm 2to 3.02×10-10A/cm 2 .The MAO coatings composed of hard Al2O3,WO3 and Ti2O3 obviously improve the wear resistance of TiAl alloy.The wear rate is-3.27×10-7g/(N·m).
文摘The effect of reinforcement on the wear mechanism of metal matrix composites (MMCs) was investigated by considering different parameters, such as sliding distance (6 km), pressure (0.14-1.1 MPa) and sliding speed (230-1480 r/min). The wear mechanisms of an MMC and the corresponding matrix material under similar experimental conditions were compared on a pin-on-disc wear machine. The pins were made of 6061 aluminum matrix alloy and 6061 aluminum matrix composite reinforced with 10% Al2O3 (volume fraciton) particles (6-18μm). The disc was made of steel. The major findings are as follows: the MMC shows much higher wear resistance than the corresponding matrix material; unlike that of matrix material, the wear of MMC is very much linear and possible to predict easily; the wear mechanism is similar for both materials other than the three-body abrasion in the case of MMC; the reinforced particles resist the abrasion and restrict the deformation of MMCs which causes high resistance to wear. These results reveal the roles of the reinforcement particles on the wear resistance of MMCs and provide a useful guide for a better control of their wear.
基金Project(1091249-1-00)supported by the Bureau of Science and Technology of Shenyang City,China
文摘In order to investigate the microstructure of TiN and TiAlN coatings and their effect on the wear resistance of Mg alloy, TiN and TiAlN coatings were deposited on AZ91 magnesium alloy by multi-arc ion plating technology.TiN and Ti70Al30N coatings were prepared on the substrate,respectively,which exhibited dark golden color and compact microstructure.The microstructures of TiN and Ti70Al30N coatings were investigated by X-ray diffractometry(XRD)and scanning electron microscopy(SEM).The micro-hardness and wear resistance of TiN and Ti70Al30N coatings were investigated in comparison with the uncoated AZ91 alloy. The XRD peaks assigned to TiN and TiAlN phases are found.The hardness of TiN coatings is two times as high as that of AZ91 alloy, and Ti70Al30N coating exhibits the highest hardness.The wear resistance of the hard coatings increases obviously as result of their high hardness.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2013BAF01B01)
文摘High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 ℃ to 1050 ℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 ℃, followed by a subsequent 2 h tempering at 400 ℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.
基金supported by the Science and Technology Projects of Sichuan Province, China (No. 2008GZ0179)
文摘WC-8wt.% Co cemented carbides with varied nano-Al 2 O 3 and nano-ZrO 2 contents were prepared respectively following conventional powder metallurgical procedures. Effects of nano-Al 2 O 3 and nano-ZrO 2 on the microstructure, behavior, and abrasive wear resistance were investigated. The result shows that a finer and more homogenous microstructure can be achieved by increasing nano-Al 2 O 3 , and increasing nano-ZrO 2 makes the microstructure more refined. Nano-Al 2 O 3 and nano-ZrO 2 could both help to give increased hardness. Transverse rupture strength is higher if the above nano-oxides are doped appropriately, whereas excess addition is deleterious. Abrasive wear resistance presents different variations with respect to increasing nano-Al 2 O 3 and nano-ZrO 2 . By contrast, increasing nano-ZrO 2 enhances the abrasive wear resistance more effectively than increasing nano-Al 2 O 3 . The influence of the two nano-oxides contents on the abrasive wear resistance does not almost vary with wear time, and the optimum addition level of nano-Al 2 O 3 in WC-8% Co cemented carbide is 0.3 wt.% from the stand of abrasive wear resistance. In addition, both of the nano-oxides can retard the increase of wear rate in long-term abrasive wear.
基金financially supported by the Key Project of China National Erzhong Group Co.(No.2012zx04010-081)
文摘The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, micro-hardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization in-dicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidifica-tion. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3-3.1 times higher than the hardness of the substrate. The wear re-sistance of NCI was also significantly improved after the PTA remelting treatment.
基金This work is financially supported by the Scientific Research Foundation for Young Teachers of Anhui Province, China (No. 2006jql082).
文摘Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobait-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3 leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties.
基金Project(51404302)supported by the National Natural Science Foundation of China
文摘The Fe40Mn40Cr10Co10/TiC (volume fraction of TiC, 10%) composites were synthesized in combination of ball milling and spark plasma sintering (SPS) in the present work. Mechanical properties and wear resistance of the Fe40Mn40Cr10Co10/TiC composites were individually investigated. It was found that TiC particles homogenously distributed in the Fe40Mn40Cr10Co10/TiC composite after being sintered at 1373 K for 15 min. Meanwhile, grain refinement was observed in the as-sintered composite. Compared with the pure Fe40Mn40Cr10Co10 medium entropy alloy (MEA) matrix grain, addition of 10% TiC particles resulted in an increase in the compressive strength from 1.571 to 2.174 GPa, and the hardness from HV 320 to HV 872. Wear resistance results demonstrated that the friction coefficient, wear depth and width of the composite decreased in comparison with the Fe40Mn40Cr10Co10 MEA matrix. Excellent mechanical properties and wear resistance could offer the Fe40Mn40Cr10Co10/TiC composite a very promising candidate for engineering applications.
基金Item Sponsored by Research Programof Anhui Science and Technology Office (2005KJ030) and Korea Research FoundationGrant (KRF-2004-005-D00096)
文摘Laser cladding nickel-based alloy coating (Ni60) and nickel-based composite coating doped with WC particles by 35 % (WCp/Ni) were produced on the low-carbon steel substrate by CO2 continuous wave laser with power of 5 kW using the injected powder technique. The effect of laser power on microstructure and wear resistance of laser cladding WCp/Ni cermet coating was investigated. The WCp/Ni alloy coating with evenly distributed WC ceramic phases and the better bond with the substrate alloy was obtained at a power of 2.2 kW. Diffusion solution reaction happened between WC particles and the substrate alloy during laser cladding, and led to the formation of block rich-tungsten carbide on the edges of the WC particles, especially at higher power. The WCp/Ni alloy coating consists of the undissolved WC particles, the block or dendritic rich-tungsten carbide, the bar-like rich-chromium carbide, and dendrite solid solution and eutectic structure among the carbides. Microhardness and wear resistance of the WCp/Ni coating at different powers were much higher or better than those of Ni60 alloy coating, and the best results were obtained at power of 2.2 kW.
文摘The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compared with each other. In the as-cast condition, the matrix of VCS and compocast processed composites exhibited globular and dendritric structures, respectively. While a more uniform distribution of SiC particulates in the matrix alloy as well as higher hardness values were obtained for the VCS processed samples, the composites produced via compocasting exhibited less porosity. The increased SiC content (up to 20% in volume fraction) resulted in a more uniform distribution of SiC particles within the matrix alloy and improved wear resistance for both the composite series. However, for the VCS processed composites, the increased SiC content, resulted in the decreased size and shape factor of globules as well as better tribological properties when compared with compocast composites. It was concluded that the improved properties of the VCS processed composites when compared with their compocast counterparts was a consequence of a more uniform distribution of SiC particulates in the matrix alloy as well as the globular microstructure generated during the VCS process.
文摘A low-alloy gray cast iron containing hard carbide-forming elements, such as vanadium and chromium, was cast by sand mould casting. Its wear resistance was compared with that of an untreated gray cast iron. Three different loading conditions were tested under a con- stant speed. It was observed that this alloy could reduce the wear loss of standard gray cast iron by up to 89%, which was much greater than what was achieved in previous reports. Scanning electron microscopy (SEM) was used to determine the predominant wear mechanism of both the alloys. In a mild wear regime, the oxidative mechanism was predominant; however, in a severe wear regime, this mechanism was not predominant and the adhesive mechanism was involved. EDX analysis was conducted to evaluate the quantitative amounts of elements in the tribochemical films formed on the wear tracks.