The wear and rolling contact fatigue (RCF) testing approaches for wheels and rails have been reviewedand evaluated in this study. The study points out the advantages and limitations of the existing approaches. Thebroa...The wear and rolling contact fatigue (RCF) testing approaches for wheels and rails have been reviewedand evaluated in this study. The study points out the advantages and limitations of the existing approaches. Thebroad analysis revealed that scaled laboratory-based wear testing is widely applied. However, it is necessary topredetermine the input parameters and observing parameters for scaled wear testing for three reasons: first, toemulate the real-world scenarios as closely as possible;second, to postprocess the results received from the scaledtesting and transfer them into real practice at full scale;third, to present the results in a legible/appropriate format.Therefore, most of the important parameters required for wear testing have been discussed with fundamental andsystematic explanations provided. Additionally, the transition of the parameters from the real-world into the testdomain is explained. This study also elaborates on the challenges of the RCF and wear testing processes andconcludes by providing major considerations toward successful testing.展开更多
The wear rate of dental restoration materials on fixed, removable, and implant prostheses is important in the maintenance of cuspate form, masticatory efficiency and occlusal stability. Many permanent restoration mate...The wear rate of dental restoration materials on fixed, removable, and implant prostheses is important in the maintenance of cuspate form, masticatory efficiency and occlusal stability. Many permanent restoration materials such as composite, amalgam, gold, or porcelain show enough resistance to wear, but the wear rates of newly developed materials are generally unknown. To evaluate the wear rate of these dental materials, in vivo (clinic) and in vitro methods can be used. Since in vivo investigations are expensive, time consuming, and difficult to standardize, various in vitro methods have been developed. The use of a chewing machine is considered the best method, because a variety of wear mechanisms, temperature changes, and chemical effects of food and drink can be simulated simultaneously. This paper describes a dual axis chewing simulator for in vitro wear test of dental restoration materials. It consists of 8 test chambers, two stepper motors and related mechanism, a hot and cool water circle system, and a control unit. In the chambers, samples and antagonists make chewing movements vertically and Albert Ludwigs University, School of dentistry, Freiburg, Germany (Lü XY, Kern M and Strub JR) horizontally driven by the stepper motors so that the gnashing and slippage of two teeth against each other is simulated. A weighted test object is programmed to collide with a sample under precise operator control. The antagonists strike against the samples at various speeds from a slow nudge to snapping. Sample holders are designed for installation of varying samples, from single teeth to complete dentures. Two baths, six valves, and a group of pipes are used for the thermocycling. The machine can simulate various chewing modes in the mouth, including fully programmable thermal water cycling between 5℃ and 60℃ The control unit consists of a computer system with a built in specific program. Important operations such as “Start”, “Zero point”, and “Stop” are carried out by pressing the function keys on the front board of the unit. During the programming process and the simulation, several test modes and relevant test parameters are shown on the monitor. The control unit is connected via a series of interfaces to different controlled parts of the machine, such as the stepper motors and the pumps of cool and warm water.展开更多
This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for sh...This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for shaping varies between 14% and 18% (latex/sand + latex ratio) for the carpet with the fabric of mosquito nets and between 16% and 18% for the one made with the fabric of cotton fiber. Thus, with a mixture of sand, fiber fabrics (cotton and mosquito nets) and rubber latex, carpets were developed. In addition, the wear test carried out on these samples indicates that it is possible to produce carpets with the new material made of rubber sand and latex: SABLATEX At room temperature. Following the characterization test, it resorts to only 16% latex with cotton fiber fabric, allowing to have carpets with good mechanical characteristics.展开更多
The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 s...The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 steel counterface under dry sliding conditions. The reinforcements include as-received Mg2B2O5 whiskers and Mg2B2O5 whiskers coated with CuO and ZnO. The volume fraction of the composites is 2%. The relationship between the wear rate and the coefficient of friction was discussed. The results indicate that the wear rate of the Mg2B2O5 whiskers coated with ZnO reinforced aluminum matrix composites is the lowest among the materials. As the applied load and sliding speed steadily increase the coefficients of friction and wear rates of the as-received matrix alloy and the fabricated composites decrease. As the applied load and sliding speed increase, the wear mechanisms of the composites shift from a mild to a severe regime.展开更多
Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used ...Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used separately:synthetic ceramic particles(B_(4)C),and natural ceramic particles(ilmenite).Optical micrographs showed uniform dispersion of reinforced particles in the matrix material.Reinforced particles refined the grain size of eutectic silicon and changed its morphology to globular type.B_(4)C reinforced composites(BRCs)showed maximum improvement in hardness of AMCs.Ilmenite reinforced composites(IRCs)showed maximum reduction in coefficient of friction values due to strong matrix−reinforcement interfacial bonding caused by the formation of interfacial compounds.Dry sliding wear behaviour of composites was significantly improved as compared to base alloy.The low density and high hardness of B_(4)C particles resulted in high dislocation density around filler particles in BRCs.On the other hand,the low thermal conductivity of ilmenite particles resulted in early oxidation and formation of a tribo-layer on surface of IRCs.So,both types of reinforcements led to the improvement in wear properties of AMCs,though the mechanisms involved were very different.Thus,the low-cost ilmenite particles can be used as alternative fillers to the high-cost B_(4)C particles for processing of wear resistant composites.展开更多
Laser alloying was used for production of thick layers on surface of Nimonic 80A-alloy.For laser surface modification,three types of pre-coated pastes were applied:with amorphous boron,with amorphous boron and molybde...Laser alloying was used for production of thick layers on surface of Nimonic 80A-alloy.For laser surface modification,three types of pre-coated pastes were applied:with amorphous boron,with amorphous boron and molybdenum as well as with amorphous boron and niobium.The microstructure,hardness and wear resistance of produced layers were studied in details.The presence of different types of borides in re-melted zone depended on the paste composition and caused an increase in hardness up to about HV 1000.The wear resistance was evaluated by calculation of mass wear intensity factor Imw and relative mass loss of specimen and counter-specimen.The wear behavior of the tested frictional pairs was determined by 3D interference microscopy,scanning electron microscopy equipped with EDS microanalyzer.The significant increase in abrasive wear resistance was observed in comparison to untreated Nimonic 80A-alloy.The lowest mass loss intensity factor was characteristic of laser-alloyed Nimonic 80A-alloy with boron and niobium(Imw=1.234 mg/(cm2?h)).Laser alloyed-layers indicated abrasive wear mechanism with clearly visible grooves.Laser alloying with boron and niobium resulted in the additional oxidative wear mechanism.In this case,EDS patterns revealed presence of oxygen on the worn surface of specimen.展开更多
基金The authors would like to acknowledge the support of the Australasian Centre for Rail Innovation(ACRI)and their industry partners that have contributed to the HH27‘Wear Simulation Development-Stage 1’project.Dr Qing Wu is the recipient of an Australian Research Council Discovery Early Career Award(project number DE210100273)funded by the Australian Government.Tim McSweeney,Adjunct Research Fellow,Centre for Railway Engineering is thankfully acknowledged for his assistance with proofreading.
文摘The wear and rolling contact fatigue (RCF) testing approaches for wheels and rails have been reviewedand evaluated in this study. The study points out the advantages and limitations of the existing approaches. Thebroad analysis revealed that scaled laboratory-based wear testing is widely applied. However, it is necessary topredetermine the input parameters and observing parameters for scaled wear testing for three reasons: first, toemulate the real-world scenarios as closely as possible;second, to postprocess the results received from the scaledtesting and transfer them into real practice at full scale;third, to present the results in a legible/appropriate format.Therefore, most of the important parameters required for wear testing have been discussed with fundamental andsystematic explanations provided. Additionally, the transition of the parameters from the real-world into the testdomain is explained. This study also elaborates on the challenges of the RCF and wear testing processes andconcludes by providing major considerations toward successful testing.
文摘The wear rate of dental restoration materials on fixed, removable, and implant prostheses is important in the maintenance of cuspate form, masticatory efficiency and occlusal stability. Many permanent restoration materials such as composite, amalgam, gold, or porcelain show enough resistance to wear, but the wear rates of newly developed materials are generally unknown. To evaluate the wear rate of these dental materials, in vivo (clinic) and in vitro methods can be used. Since in vivo investigations are expensive, time consuming, and difficult to standardize, various in vitro methods have been developed. The use of a chewing machine is considered the best method, because a variety of wear mechanisms, temperature changes, and chemical effects of food and drink can be simulated simultaneously. This paper describes a dual axis chewing simulator for in vitro wear test of dental restoration materials. It consists of 8 test chambers, two stepper motors and related mechanism, a hot and cool water circle system, and a control unit. In the chambers, samples and antagonists make chewing movements vertically and Albert Ludwigs University, School of dentistry, Freiburg, Germany (Lü XY, Kern M and Strub JR) horizontally driven by the stepper motors so that the gnashing and slippage of two teeth against each other is simulated. A weighted test object is programmed to collide with a sample under precise operator control. The antagonists strike against the samples at various speeds from a slow nudge to snapping. Sample holders are designed for installation of varying samples, from single teeth to complete dentures. Two baths, six valves, and a group of pipes are used for the thermocycling. The machine can simulate various chewing modes in the mouth, including fully programmable thermal water cycling between 5℃ and 60℃ The control unit consists of a computer system with a built in specific program. Important operations such as “Start”, “Zero point”, and “Stop” are carried out by pressing the function keys on the front board of the unit. During the programming process and the simulation, several test modes and relevant test parameters are shown on the monitor. The control unit is connected via a series of interfaces to different controlled parts of the machine, such as the stepper motors and the pumps of cool and warm water.
文摘This work focuses on the development of carpets from sand, fabrics of cotton fiber and mosquito nets and rubber latex. Following a study on the choice of the best formulations, the quantity of rubber latex used for shaping varies between 14% and 18% (latex/sand + latex ratio) for the carpet with the fabric of mosquito nets and between 16% and 18% for the one made with the fabric of cotton fiber. Thus, with a mixture of sand, fiber fabrics (cotton and mosquito nets) and rubber latex, carpets were developed. In addition, the wear test carried out on these samples indicates that it is possible to produce carpets with the new material made of rubber sand and latex: SABLATEX At room temperature. Following the characterization test, it resorts to only 16% latex with cotton fiber fabric, allowing to have carpets with good mechanical characteristics.
基金Project(2011CB612200)supported by the National Basic Research Program of China
文摘The friction and wear properties of Mg2B2O5 whisker reinforced 6061Al matrix composite fabricated via power ultrasonic-stir casting process were investigated using a ball-on-disk wear-testing machine against a GCr45 steel counterface under dry sliding conditions. The reinforcements include as-received Mg2B2O5 whiskers and Mg2B2O5 whiskers coated with CuO and ZnO. The volume fraction of the composites is 2%. The relationship between the wear rate and the coefficient of friction was discussed. The results indicate that the wear rate of the Mg2B2O5 whiskers coated with ZnO reinforced aluminum matrix composites is the lowest among the materials. As the applied load and sliding speed steadily increase the coefficients of friction and wear rates of the as-received matrix alloy and the fabricated composites decrease. As the applied load and sliding speed increase, the wear mechanisms of the composites shift from a mild to a severe regime.
文摘Dry sliding wear behaviour of stir-cast aluminium matrix composites(AMCs)containing LM13 alloy as matrix and ceramic particles as reinforcement was investigated.Two different ceramic particle reinforcements were used separately:synthetic ceramic particles(B_(4)C),and natural ceramic particles(ilmenite).Optical micrographs showed uniform dispersion of reinforced particles in the matrix material.Reinforced particles refined the grain size of eutectic silicon and changed its morphology to globular type.B_(4)C reinforced composites(BRCs)showed maximum improvement in hardness of AMCs.Ilmenite reinforced composites(IRCs)showed maximum reduction in coefficient of friction values due to strong matrix−reinforcement interfacial bonding caused by the formation of interfacial compounds.Dry sliding wear behaviour of composites was significantly improved as compared to base alloy.The low density and high hardness of B_(4)C particles resulted in high dislocation density around filler particles in BRCs.On the other hand,the low thermal conductivity of ilmenite particles resulted in early oxidation and formation of a tribo-layer on surface of IRCs.So,both types of reinforcements led to the improvement in wear properties of AMCs,though the mechanisms involved were very different.Thus,the low-cost ilmenite particles can be used as alternative fillers to the high-cost B_(4)C particles for processing of wear resistant composites.
基金financially supported within the project "Engineer of the Future.Improving the didactic potential of the Poznan University of Technology"-POKL.04.03.00-00-259/12,implemented within the Human Capital Operational Programme,co-financed by the European Union within the European Social Fundby Ministry of Science and Higher Education in Poland as a part of the 02/24/DSPB project
文摘Laser alloying was used for production of thick layers on surface of Nimonic 80A-alloy.For laser surface modification,three types of pre-coated pastes were applied:with amorphous boron,with amorphous boron and molybdenum as well as with amorphous boron and niobium.The microstructure,hardness and wear resistance of produced layers were studied in details.The presence of different types of borides in re-melted zone depended on the paste composition and caused an increase in hardness up to about HV 1000.The wear resistance was evaluated by calculation of mass wear intensity factor Imw and relative mass loss of specimen and counter-specimen.The wear behavior of the tested frictional pairs was determined by 3D interference microscopy,scanning electron microscopy equipped with EDS microanalyzer.The significant increase in abrasive wear resistance was observed in comparison to untreated Nimonic 80A-alloy.The lowest mass loss intensity factor was characteristic of laser-alloyed Nimonic 80A-alloy with boron and niobium(Imw=1.234 mg/(cm2?h)).Laser alloyed-layers indicated abrasive wear mechanism with clearly visible grooves.Laser alloying with boron and niobium resulted in the additional oxidative wear mechanism.In this case,EDS patterns revealed presence of oxygen on the worn surface of specimen.