Occurrence degree of the accident on Zhejiang freeway is graded. Evaluation indicator system of weather impact on freeway is established. We use principal component analysis to extract meteorological indicators,and us...Occurrence degree of the accident on Zhejiang freeway is graded. Evaluation indicator system of weather impact on freeway is established. We use principal component analysis to extract meteorological indicators,and use Logistic regression to establish evaluation model of meteorological indicator,thereby determining evaluation grade of traffic weather impact. Via application test,it is proved that the evaluation on traffic weather condition by the model corresponds with actual situation,which can provide certain decision-making basis for traffic department and the public.展开更多
In January 2013, China suffered large-scale haze weather four times, affecting 30 cities in all. The average number of haze weather days in many regions was higher than the same period in every year since 1961. PM2.s,...In January 2013, China suffered large-scale haze weather four times, affecting 30 cities in all. The average number of haze weather days in many regions was higher than the same period in every year since 1961. PM2.s, which is defined as fine particulate matter with an aerodynamic diameter of 2.5 micrometers or less, is the main health hazard in the context of haze weather. It can carry large amounts of poisonous and harmful substances, and penetrate deep into the lungs and blood circulation through the respiratory tract, thereby affecting human health.展开更多
The advanced infrared(IR) and microwave(MW) sounding systems have been providing atmospheric sounding information critical for nowcasting and improving weather forecasts through data assimilation in numerical weather ...The advanced infrared(IR) and microwave(MW) sounding systems have been providing atmospheric sounding information critical for nowcasting and improving weather forecasts through data assimilation in numerical weather prediction. In recent years, advanced IR and MW sounder systems are being proposed to be onboard CubeSats that are much more cost efficient than traditional satellite systems. An impact study using a regional Observing System Simulation Experiment on a local severe storm(LSS) was carried out to evaluate the alternative of using advanced MW and IR sounders for high-impact weather forecasting in mitigating the potential data gap of the Advanced Technology Microwave Sounder(ATMS) and the Cross-track Infrared Sounder(CrIS) on the Suomi-NPP(SNPP) or Joint Polar Satellite System(JPSS). It was found that either MicroMAS-2 or the CubeSat Infrared Atmospheric Sounder(CIRAS) on a single CubeSat was able to provide a positive impact on the LSS forecast, and more CubeSats with increased data coverage yielded larger positive impacts.MicroMAS-2 has the potential to mitigate the loss of ATMS, and CIRAS the loss of CrIS, on SNPP or JPSS, especially when multiple CubeSats are launched. There are several approximations and limitations to the present study, but these represent efficiencies appropriate to the principal goal of the study — gauging the relative values of these sensors.展开更多
This article reviews Fuqing ZHANG’s contributions to mesoscale atmospheric science,from research to mentoring to academic service,over his 20-year career.His fundamental scientific contributions on predictability,dat...This article reviews Fuqing ZHANG’s contributions to mesoscale atmospheric science,from research to mentoring to academic service,over his 20-year career.His fundamental scientific contributions on predictability,data assimilation,and dynamics of high impact weather,especially gravity waves and tropical cyclones,are highlighted.His extremely generous efforts to efficiently transmit to the community new scientific knowledge and ideas through mentoring,interacting,workshop organizing,and reviewing are summarized.Special appreciation is given to his tremendous contributions to the development of mesoscale meteorology in China and the education of Chinese graduate students and young scientists.展开更多
By adopting various stochastic weather generators, different research groups in their recent studies have realized the importance of the effects of climatic variability on crop growth and development. The conventional...By adopting various stochastic weather generators, different research groups in their recent studies have realized the importance of the effects of climatic variability on crop growth and development. The conventional assessments derived climate change scenarios from General Circulation Models (GCMs) experiments, however, are incapable of helping to understand this importance. The particular interest here is to review the general methodological scheme to incorporate stochastic weather generator into climate impact studies and the specific approaches in our studies, and put forward uncertainties that still exist. A variety of approaches have been taken to develop the parameterization program and stochastic experiment, and adjust the parameters of atypical stochastic weather generator called WGEN. Usually, the changes in monthly means and variances of weather variables between controlled and changed climate are used to perturb the parameters to generate the intended daily climate scenarios. We establish a parameterization program and methods for stochastic experiment of WGEN in the light of outputs of short-term climate prediction models, and evaluate its simulations on both temporal and spatial scales. Also, we manipulated parameters in relation to the changes in precipitation to produce the intended types and qualitative magnitudes of climatic variability. These adjustments yield various changes in climatic variability for sensitivity analyses. The impacts of changes in climatic variability on maize growth, final yield, and agro-climatic resources in Northeast China are assessed and presented as the case studies through the above methods. However, this corporation is still equivocal due to deficiencies of the generator and unsophisticated manipulation of parameters. To detect and simulate the changes in climatic variability is one of the indispensable ways to reduce the uncertainties in this aspect.展开更多
Accurate atmospheric temperature and moisture information with high temporal/spatial resolutions are two of the key parameters needed in regional numerical weather prediction(NWP) models to reliably predict high-impac...Accurate atmospheric temperature and moisture information with high temporal/spatial resolutions are two of the key parameters needed in regional numerical weather prediction(NWP) models to reliably predict high-impact weather events such as local severe storms(LSSs). High spectral resolution or hyperspectral infrared(HIR) sounders from geostationary orbit(GEO) provide an unprecedented source of near time-continuous, three-dimensional information on the dynamic and thermodynamic atmospheric fields—an important benefit for nowcasting and NWP-based forecasting. In order to demonstrate the value of GEO HIR sounder radiances on LSS forecasts, a quick regional OSSE(Observing System Simulation Experiment)framework has been developed, including high-resolution nature run generation, synthetic observation simulation and validation, and impact study on LSS forecasts. Results show that, on top of the existing LEO(low earth orbit) sounders, a GEO HIR sounder may provide value-added impact [a reduction of 3.56% in normalized root-mean-square difference(RMSD)] on LSS forecasts due to large spatial coverage and high temporal resolution, even though the data are assimilated every 6 h with a thinning of 60 km. Additionally, more frequent assimilations and smaller thinning distances allow more observations to be assimilated, and may further increase the positive impact from a GEO HIR sounder. On the other hand, with denser and more frequent observations assimilated, it becomes more difficult to handle the spatial error correlation in observations and gravity waves due to the limitations of current assimilation and forecast systems(such as a static background error covariance). The peak reduction of 4.6% in normalized RMSD is found when observations are assimilated every 3 h with a thinning distance of 30 km.展开更多
Visible and near-infrared spectra are routinely used to achieve mineral abundances and mineral chemistry of the global surfaces of the Moon and asteroids.However,these spectra can be significantly modified by space we...Visible and near-infrared spectra are routinely used to achieve mineral abundances and mineral chemistry of the global surfaces of the Moon and asteroids.However,these spectra can be significantly modified by space weathering,including micrometeorite impacting,solar wind implanting and cosmic ray irradiation.In this paper we report results of laser-bombarding experiments on the Jilin ordinary chondrite,simulating micrometeorite impacting on the surface of asteroids.After laser bombardment,the spectra became significantly redder and moderately darker. With the Modified Gaussian Model(MGM)method,the absorption band positions of olivine can be decoded from the modified spectra,which are correlated with their fayalite contents.In addition,a continuum of the modified spectra can be decoded,and its slope may be used to depict the degree of space weathering.However,relative strengths of the absorption sub-bands of olivine and pyroxenes show significant variant after the bombardment, hence they cannot be used to estimate the relative abundances of high-Ca to low-Ca pyroxenes of the lunar surface and other matured surfaces of asteroids.展开更多
Based on climate change scenarios projected from GCMs (GFDL, UKMO and MPI), this study evaluates possible impacts of climate warming on rice production in China using numerical simulation experiments. A stochastic wea...Based on climate change scenarios projected from GCMs (GFDL, UKMO and MPI), this study evaluates possible impacts of climate warming on rice production in China using numerical simulation experiments. A stochastic weather generator is used to make the projected climatic change scenarios suitable to the input of crop model, ORYZA1. The results show that the duration of rice growing season will be lengthened by 6-11 days and the accumulated temperature will increase by 200℃.d-330℃.d when CO2 concentration in the atmosphere doubles. The probability of cool injury in reproductive and grain filling period will decrease while that of heat stress will increase. Rice yield will decrease if cultivars and fanning practices are unchanged. If the dates of rice development stages can be maintained unchanged through cultivar adjustment although rice yield in most parts of the areas will decrease, the decrements will be much less than that when cultivars and farming practices are unchanged.展开更多
This study presents an analysis of the impact of forest fires in Puerto Rico for the period from 2013-2014. The climatological factors analyzed included precipitation, temperature, relative humidity, and wind. Several...This study presents an analysis of the impact of forest fires in Puerto Rico for the period from 2013-2014. The climatological factors analyzed included precipitation, temperature, relative humidity, and wind. Several factors have combined to the increase of these forest fires, among others, a decrease in precipitation during this period, as well as an increase in the human involvement in these fires from approximately 40% occurs in the night period (5:00 pm to 8:00 am), where the weather conditions do not favor the appearance of these phenomena. An increase in fires of 44% occurred in 2013 compared to 2014, causing an economic loss of $13.8 million. Fire also adversely affected the flora and fauna of the island, but this was not evaluated in this paper.展开更多
配电线路长期暴露于自然环境下,易受强对流天气影响而发生故障。2022年4月19日午后,受大风、雷电等高影响天气影响,陇南市13条配电线路先后出现故障。利用陇南市自动气象观测站的极大风速和闪电定位数据以及风云4A(FY-4A)红外云图、探...配电线路长期暴露于自然环境下,易受强对流天气影响而发生故障。2022年4月19日午后,受大风、雷电等高影响天气影响,陇南市13条配电线路先后出现故障。利用陇南市自动气象观测站的极大风速和闪电定位数据以及风云4A(FY-4A)红外云图、探空资料、多普勒天气雷达等资料,对此次强对流天气过程及其对电网影响进行分析。结果表明:(1)此次强对流天气以雷电、雷暴大风天气为主,西和、礼县、武都、康县等县(区)出现大面积用户停电和电力负荷损失等不利影响。(2)强对流发展主要受高原槽和切变线共同影响,在“上冷下暖”的大气层结不稳定条件下,由地面辐合线触发较强的雷暴大风天气;卫星云图和雷达回波也显示对流云团的发生发展与地面雷暴大风相吻合。(3)陇南市配电线路故障范围分布与强对流天气发生时间和过境路径基本一致,利用逐10 min极大风速和闪电定位数据,探讨得出当极大风速值超过15.0 m·s^(-1)、或正地闪电流强度超过43 k A、或负地闪电流强度超过26 k A时,配电线路发生故障的可能性较大。展开更多
基金Supported by the Science and Technology Plan Item of Zhejiang Province,China(2014C23003)
文摘Occurrence degree of the accident on Zhejiang freeway is graded. Evaluation indicator system of weather impact on freeway is established. We use principal component analysis to extract meteorological indicators,and use Logistic regression to establish evaluation model of meteorological indicator,thereby determining evaluation grade of traffic weather impact. Via application test,it is proved that the evaluation on traffic weather condition by the model corresponds with actual situation,which can provide certain decision-making basis for traffic department and the public.
文摘In January 2013, China suffered large-scale haze weather four times, affecting 30 cities in all. The average number of haze weather days in many regions was higher than the same period in every year since 1961. PM2.s, which is defined as fine particulate matter with an aerodynamic diameter of 2.5 micrometers or less, is the main health hazard in the context of haze weather. It can carry large amounts of poisonous and harmful substances, and penetrate deep into the lungs and blood circulation through the respiratory tract, thereby affecting human health.
基金partly supported by the NESDIS OPPA OSSE program [grant number NA15NES4320001]
文摘The advanced infrared(IR) and microwave(MW) sounding systems have been providing atmospheric sounding information critical for nowcasting and improving weather forecasts through data assimilation in numerical weather prediction. In recent years, advanced IR and MW sounder systems are being proposed to be onboard CubeSats that are much more cost efficient than traditional satellite systems. An impact study using a regional Observing System Simulation Experiment on a local severe storm(LSS) was carried out to evaluate the alternative of using advanced MW and IR sounders for high-impact weather forecasting in mitigating the potential data gap of the Advanced Technology Microwave Sounder(ATMS) and the Cross-track Infrared Sounder(CrIS) on the Suomi-NPP(SNPP) or Joint Polar Satellite System(JPSS). It was found that either MicroMAS-2 or the CubeSat Infrared Atmospheric Sounder(CIRAS) on a single CubeSat was able to provide a positive impact on the LSS forecast, and more CubeSats with increased data coverage yielded larger positive impacts.MicroMAS-2 has the potential to mitigate the loss of ATMS, and CIRAS the loss of CrIS, on SNPP or JPSS, especially when multiple CubeSats are launched. There are several approximations and limitations to the present study, but these represent efficiencies appropriate to the principal goal of the study — gauging the relative values of these sensors.
基金supported by the Natural Science Foundation of China(Grant Nos.42030604,41875051,and 41425018)during the writing of this review。
文摘This article reviews Fuqing ZHANG’s contributions to mesoscale atmospheric science,from research to mentoring to academic service,over his 20-year career.His fundamental scientific contributions on predictability,data assimilation,and dynamics of high impact weather,especially gravity waves and tropical cyclones,are highlighted.His extremely generous efforts to efficiently transmit to the community new scientific knowledge and ideas through mentoring,interacting,workshop organizing,and reviewing are summarized.Special appreciation is given to his tremendous contributions to the development of mesoscale meteorology in China and the education of Chinese graduate students and young scientists.
基金This study was supported by the third sub-project of the national key research project in the 9thFive-Year Plan: Study on the
文摘By adopting various stochastic weather generators, different research groups in their recent studies have realized the importance of the effects of climatic variability on crop growth and development. The conventional assessments derived climate change scenarios from General Circulation Models (GCMs) experiments, however, are incapable of helping to understand this importance. The particular interest here is to review the general methodological scheme to incorporate stochastic weather generator into climate impact studies and the specific approaches in our studies, and put forward uncertainties that still exist. A variety of approaches have been taken to develop the parameterization program and stochastic experiment, and adjust the parameters of atypical stochastic weather generator called WGEN. Usually, the changes in monthly means and variances of weather variables between controlled and changed climate are used to perturb the parameters to generate the intended daily climate scenarios. We establish a parameterization program and methods for stochastic experiment of WGEN in the light of outputs of short-term climate prediction models, and evaluate its simulations on both temporal and spatial scales. Also, we manipulated parameters in relation to the changes in precipitation to produce the intended types and qualitative magnitudes of climatic variability. These adjustments yield various changes in climatic variability for sensitivity analyses. The impacts of changes in climatic variability on maize growth, final yield, and agro-climatic resources in Northeast China are assessed and presented as the case studies through the above methods. However, this corporation is still equivocal due to deficiencies of the generator and unsophisticated manipulation of parameters. To detect and simulate the changes in climatic variability is one of the indispensable ways to reduce the uncertainties in this aspect.
基金supported by the NESDIS OPPA OSSE program (Grant No. NA15NES4320001)
文摘Accurate atmospheric temperature and moisture information with high temporal/spatial resolutions are two of the key parameters needed in regional numerical weather prediction(NWP) models to reliably predict high-impact weather events such as local severe storms(LSSs). High spectral resolution or hyperspectral infrared(HIR) sounders from geostationary orbit(GEO) provide an unprecedented source of near time-continuous, three-dimensional information on the dynamic and thermodynamic atmospheric fields—an important benefit for nowcasting and NWP-based forecasting. In order to demonstrate the value of GEO HIR sounder radiances on LSS forecasts, a quick regional OSSE(Observing System Simulation Experiment)framework has been developed, including high-resolution nature run generation, synthetic observation simulation and validation, and impact study on LSS forecasts. Results show that, on top of the existing LEO(low earth orbit) sounders, a GEO HIR sounder may provide value-added impact [a reduction of 3.56% in normalized root-mean-square difference(RMSD)] on LSS forecasts due to large spatial coverage and high temporal resolution, even though the data are assimilated every 6 h with a thinning of 60 km. Additionally, more frequent assimilations and smaller thinning distances allow more observations to be assimilated, and may further increase the positive impact from a GEO HIR sounder. On the other hand, with denser and more frequent observations assimilated, it becomes more difficult to handle the spatial error correlation in observations and gravity waves due to the limitations of current assimilation and forecast systems(such as a static background error covariance). The peak reduction of 4.6% in normalized RMSD is found when observations are assimilated every 3 h with a thinning distance of 30 km.
基金financially supported by the National Natural Science Foundation of China(No.51365014)the Industrial Support Key Project of Jiangxi Province,China(No.20161BBE50072)
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (kzcx2-yw-110,KZCX2-YW-Q08)the Chinese National Programs for High Technology Research and Development(2009AA122201)
文摘Visible and near-infrared spectra are routinely used to achieve mineral abundances and mineral chemistry of the global surfaces of the Moon and asteroids.However,these spectra can be significantly modified by space weathering,including micrometeorite impacting,solar wind implanting and cosmic ray irradiation.In this paper we report results of laser-bombarding experiments on the Jilin ordinary chondrite,simulating micrometeorite impacting on the surface of asteroids.After laser bombardment,the spectra became significantly redder and moderately darker. With the Modified Gaussian Model(MGM)method,the absorption band positions of olivine can be decoded from the modified spectra,which are correlated with their fayalite contents.In addition,a continuum of the modified spectra can be decoded,and its slope may be used to depict the degree of space weathering.However,relative strengths of the absorption sub-bands of olivine and pyroxenes show significant variant after the bombardment, hence they cannot be used to estimate the relative abundances of high-Ca to low-Ca pyroxenes of the lunar surface and other matured surfaces of asteroids.
文摘Based on climate change scenarios projected from GCMs (GFDL, UKMO and MPI), this study evaluates possible impacts of climate warming on rice production in China using numerical simulation experiments. A stochastic weather generator is used to make the projected climatic change scenarios suitable to the input of crop model, ORYZA1. The results show that the duration of rice growing season will be lengthened by 6-11 days and the accumulated temperature will increase by 200℃.d-330℃.d when CO2 concentration in the atmosphere doubles. The probability of cool injury in reproductive and grain filling period will decrease while that of heat stress will increase. Rice yield will decrease if cultivars and fanning practices are unchanged. If the dates of rice development stages can be maintained unchanged through cultivar adjustment although rice yield in most parts of the areas will decrease, the decrements will be much less than that when cultivars and farming practices are unchanged.
文摘This study presents an analysis of the impact of forest fires in Puerto Rico for the period from 2013-2014. The climatological factors analyzed included precipitation, temperature, relative humidity, and wind. Several factors have combined to the increase of these forest fires, among others, a decrease in precipitation during this period, as well as an increase in the human involvement in these fires from approximately 40% occurs in the night period (5:00 pm to 8:00 am), where the weather conditions do not favor the appearance of these phenomena. An increase in fires of 44% occurred in 2013 compared to 2014, causing an economic loss of $13.8 million. Fire also adversely affected the flora and fauna of the island, but this was not evaluated in this paper.
文摘配电线路长期暴露于自然环境下,易受强对流天气影响而发生故障。2022年4月19日午后,受大风、雷电等高影响天气影响,陇南市13条配电线路先后出现故障。利用陇南市自动气象观测站的极大风速和闪电定位数据以及风云4A(FY-4A)红外云图、探空资料、多普勒天气雷达等资料,对此次强对流天气过程及其对电网影响进行分析。结果表明:(1)此次强对流天气以雷电、雷暴大风天气为主,西和、礼县、武都、康县等县(区)出现大面积用户停电和电力负荷损失等不利影响。(2)强对流发展主要受高原槽和切变线共同影响,在“上冷下暖”的大气层结不稳定条件下,由地面辐合线触发较强的雷暴大风天气;卫星云图和雷达回波也显示对流云团的发生发展与地面雷暴大风相吻合。(3)陇南市配电线路故障范围分布与强对流天气发生时间和过境路径基本一致,利用逐10 min极大风速和闪电定位数据,探讨得出当极大风速值超过15.0 m·s^(-1)、或正地闪电流强度超过43 k A、或负地闪电流强度超过26 k A时,配电线路发生故障的可能性较大。