By 2018, China had conducted 34 scientific explorations in Antarctica spearheaded by the Chinese National Antarctic Research Expedition(CHINARE). Since the first CHINARE over 30 years ago, considerable work has been u...By 2018, China had conducted 34 scientific explorations in Antarctica spearheaded by the Chinese National Antarctic Research Expedition(CHINARE). Since the first CHINARE over 30 years ago, considerable work has been undertaken to promote the development of techniques for the observation of surface and upper-air meteorological elements, and satellite image and data reception systems at Chinese Antarctic stations and onboard Chinese icebreakers have played critical roles in this endeavor. The upgrade of in situ and remote sensing measurement methods and the improvement of weather forecasting skill have enabled forecasters to achieve reliable on-site weather forecasting for the CHINARE. Nowadays, the routing of icebreakers, navigation of aircraft, and activities at Chinese Antarctic stations all benefit from the accurate weather forecasting service. In this paper, a review of the conventional meteorological measurement and operational weather forecasting services of the CHINARE is presented.展开更多
This paper introduces a fast urban microscale meteorological model with a horizontal resolution of O(10)m,named URBAN(Urban Rapid&Building-Aware Neighborhood),which is capable of rapid assessment of meteorological...This paper introduces a fast urban microscale meteorological model with a horizontal resolution of O(10)m,named URBAN(Urban Rapid&Building-Aware Neighborhood),which is capable of rapid assessment of meteorological fields over key urban areas,including wind speed,air temperature,humidity and thermal comfort index,with the execution time less than10 minutes consuming 1 CPU core.URBAN uses a fast wind diagnostic method to construct three-dimensional(3-D)wind fields surrounding complex building clusters with their geometry resolved explicitly.To enhance the accuracy of wind reconstruction and the continuity of the initial wind field around irregular buildings,we propose a new parameterization method based on stream functions,which can accurately characterize the influences of complex urban building clusters on the three-dimensional wind field.The model can provide various results for the meteorological service of large outdoor activities,including conventional meteorological elements(wind,temperature,humidity,radiation,etc.)and the Universal Thermal Comfort Index,which is derived from the relationship between physiological processes and environmental meteorological conditions.In this paper,URBAN is applied to develop an automatic analysis and forecast system of microscale meteorological elements over the central Beijing region in summer during a large outdoor event.By comparing with the half-hourly observations from three auto weather stations(AWSs)in the region,the root-mean-square errors(RMSEs)of the modeled 10-meter-height wind speed,2-meter-height air temperature and humidity are 0.98 m s^(-1),1.37℃and 7.37%,respectively.展开更多
基金supported by the project of National Key R&D Program of China(Grant no.2016YFC1402705)
文摘By 2018, China had conducted 34 scientific explorations in Antarctica spearheaded by the Chinese National Antarctic Research Expedition(CHINARE). Since the first CHINARE over 30 years ago, considerable work has been undertaken to promote the development of techniques for the observation of surface and upper-air meteorological elements, and satellite image and data reception systems at Chinese Antarctic stations and onboard Chinese icebreakers have played critical roles in this endeavor. The upgrade of in situ and remote sensing measurement methods and the improvement of weather forecasting skill have enabled forecasters to achieve reliable on-site weather forecasting for the CHINARE. Nowadays, the routing of icebreakers, navigation of aircraft, and activities at Chinese Antarctic stations all benefit from the accurate weather forecasting service. In this paper, a review of the conventional meteorological measurement and operational weather forecasting services of the CHINARE is presented.
基金supported by the National Natural Science Foundation of China(Grant No.42205075)the National Key Research and Development Program of China(Grant No.2022YFC3004105)the Youth Beijing Scholars Program(Grant No.2018-007)。
文摘This paper introduces a fast urban microscale meteorological model with a horizontal resolution of O(10)m,named URBAN(Urban Rapid&Building-Aware Neighborhood),which is capable of rapid assessment of meteorological fields over key urban areas,including wind speed,air temperature,humidity and thermal comfort index,with the execution time less than10 minutes consuming 1 CPU core.URBAN uses a fast wind diagnostic method to construct three-dimensional(3-D)wind fields surrounding complex building clusters with their geometry resolved explicitly.To enhance the accuracy of wind reconstruction and the continuity of the initial wind field around irregular buildings,we propose a new parameterization method based on stream functions,which can accurately characterize the influences of complex urban building clusters on the three-dimensional wind field.The model can provide various results for the meteorological service of large outdoor activities,including conventional meteorological elements(wind,temperature,humidity,radiation,etc.)and the Universal Thermal Comfort Index,which is derived from the relationship between physiological processes and environmental meteorological conditions.In this paper,URBAN is applied to develop an automatic analysis and forecast system of microscale meteorological elements over the central Beijing region in summer during a large outdoor event.By comparing with the half-hourly observations from three auto weather stations(AWSs)in the region,the root-mean-square errors(RMSEs)of the modeled 10-meter-height wind speed,2-meter-height air temperature and humidity are 0.98 m s^(-1),1.37℃and 7.37%,respectively.