Rainfall intensity and slope gradient are two of the most important factors affecting the variations of runoff nitrogen(N).However,the effects of slope gradient and rainfall intensity on N loss via surface flow and in...Rainfall intensity and slope gradient are two of the most important factors affecting the variations of runoff nitrogen(N).However,the effects of slope gradient and rainfall intensity on N loss via surface flow and interflow on weathered granite slopes are poorly understood.In this study,12 artificial rainfalls(three rainfall intensities and four slope gradients)were simulated to investigate the coupling loss characteristics of surface flow–interflow–total nitrogen(TN),nitrate nitrogen(NO_3^--N)and ammonia nitrogen(NH_4^+-N)on weathered granite slopes.The results show that slope gradient has a greater impact on the surface flow when the rainfall intensity is relatively large.The effect gradually weakens with the decrement of rainfall intensity.The interflow yield increases firstly with the prolongation of rainfall duration,then tends to be stable and finally decreases.The total surface flow percentage increases with rainfall intensity while it decreases with increasing slope gradient with a range of 10.88%-71.47%.The TN loss concentration of the surface flow continually decreases with rainfall duration while that of the interflow shows different fluctuations.However,the TN loss loads of both surface flow and interflow increase with increasing rainfall intensity and slope gradient.The NO_3^--N concentration of interflow is much higher than that of the surface flow.The NH_4^+-N concentration is always less than that of NO_3^--N with no significant difference between surface flow and interflow.The percentages of the TN,NO_3^--N,and NH_4^+-N total loss load and concentration of surface flow and interflow were analyzed.The results show that N loss via both surface flow and interflow occurs mainly in the form of NO_3^--N.Most of the N loss is caused by interflow which is the preferential path of runoff nutrient loss.These findings provide data support and underlying insights for the control of runoff and N loss on the weathered granite slopes.展开更多
The ocean surface wind(OSW)data retrieved from microwave scatterometers have high spatial accuracy and represent the only wind data assimilated by global numerical models on the ocean surface,thus playing an important...The ocean surface wind(OSW)data retrieved from microwave scatterometers have high spatial accuracy and represent the only wind data assimilated by global numerical models on the ocean surface,thus playing an important role in improving the forecast skills of global medium-range weather prediction models.To improve the forecast skills of the Global/Regional Assimilation and Prediction System Global Forecast System(GRAPES_GFS),the HY-2B OSW data is assimilated into the GRAPES_GFS four-dimensional variational assimilation(4DVAR)system.Then,the impacts of the HY-2B OSW data assimilation on the analyses and forecasts of GRAPES_GFS are analyzed based on one-month assimilation cycle experiments.The results show that after assimilating the HY-2B OSW data,the analysis errors of the wind fields in the lower-middle troposphere(1000-600 hPa)of the tropics and the southern hemisphere(SH)are significantly reduced by an average rate of about 5%.The impacts of the HY-2B OSW data assimilation on the analysis fields of wind,geopotential height,and temperature are not solely limited to the boundary layer but also extend throughout the entire troposphere after about two days of cycling assimilation.Furthermore,assimilating the HY-2B OSW data can significantly improve the forecast skill of wind,geopotential height,and temperature in the troposphere of the tropics and SH.展开更多
The study is based on the analysis of the design and operational path conducted by the architect Gio Ponti on ceramic materials between the late 1920s and the early 1970s,with particular attention to applications in t...The study is based on the analysis of the design and operational path conducted by the architect Gio Ponti on ceramic materials between the late 1920s and the early 1970s,with particular attention to applications in the Milanese context.Milan represents the main laboratory for experimenting with the figurative,plastic and chromatic potential of modern ceramic surfaces.The analysis of archival documentation preserved at the CSAC Archive in Parma,the Gio Ponti Archives in Milan and the Archivio Progetti at the Iuav University of Venice allows for a deeper understanding of the design path at different scales,from the design of specific lines of ceramics for industry,to their application in buildings.The second part of the analysis is aimed at tracing the conservation problems of ceramic surfaces,with the aim of highlighting both the cultural and technical aspects that are affecting the conservation of this heritage.Connected to the latter aspect is a focus on the principal deterioration phenomena of modern ceramic surfaces related to different types of substrates,providing in-depth knowledge that opens up new strategies for their conservation.展开更多
The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake...The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.展开更多
基金supported by the National Natural Science Foundation of China (4187706541471221)
文摘Rainfall intensity and slope gradient are two of the most important factors affecting the variations of runoff nitrogen(N).However,the effects of slope gradient and rainfall intensity on N loss via surface flow and interflow on weathered granite slopes are poorly understood.In this study,12 artificial rainfalls(three rainfall intensities and four slope gradients)were simulated to investigate the coupling loss characteristics of surface flow–interflow–total nitrogen(TN),nitrate nitrogen(NO_3^--N)and ammonia nitrogen(NH_4^+-N)on weathered granite slopes.The results show that slope gradient has a greater impact on the surface flow when the rainfall intensity is relatively large.The effect gradually weakens with the decrement of rainfall intensity.The interflow yield increases firstly with the prolongation of rainfall duration,then tends to be stable and finally decreases.The total surface flow percentage increases with rainfall intensity while it decreases with increasing slope gradient with a range of 10.88%-71.47%.The TN loss concentration of the surface flow continually decreases with rainfall duration while that of the interflow shows different fluctuations.However,the TN loss loads of both surface flow and interflow increase with increasing rainfall intensity and slope gradient.The NO_3^--N concentration of interflow is much higher than that of the surface flow.The NH_4^+-N concentration is always less than that of NO_3^--N with no significant difference between surface flow and interflow.The percentages of the TN,NO_3^--N,and NH_4^+-N total loss load and concentration of surface flow and interflow were analyzed.The results show that N loss via both surface flow and interflow occurs mainly in the form of NO_3^--N.Most of the N loss is caused by interflow which is the preferential path of runoff nutrient loss.These findings provide data support and underlying insights for the control of runoff and N loss on the weathered granite slopes.
基金supported by the Key Special Project for the Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (Grant No. GML2019ZD0302)the National Key R&D Program of China (Grant No. 2018YFC1506205)
文摘The ocean surface wind(OSW)data retrieved from microwave scatterometers have high spatial accuracy and represent the only wind data assimilated by global numerical models on the ocean surface,thus playing an important role in improving the forecast skills of global medium-range weather prediction models.To improve the forecast skills of the Global/Regional Assimilation and Prediction System Global Forecast System(GRAPES_GFS),the HY-2B OSW data is assimilated into the GRAPES_GFS four-dimensional variational assimilation(4DVAR)system.Then,the impacts of the HY-2B OSW data assimilation on the analyses and forecasts of GRAPES_GFS are analyzed based on one-month assimilation cycle experiments.The results show that after assimilating the HY-2B OSW data,the analysis errors of the wind fields in the lower-middle troposphere(1000-600 hPa)of the tropics and the southern hemisphere(SH)are significantly reduced by an average rate of about 5%.The impacts of the HY-2B OSW data assimilation on the analysis fields of wind,geopotential height,and temperature are not solely limited to the boundary layer but also extend throughout the entire troposphere after about two days of cycling assimilation.Furthermore,assimilating the HY-2B OSW data can significantly improve the forecast skill of wind,geopotential height,and temperature in the troposphere of the tropics and SH.
文摘The study is based on the analysis of the design and operational path conducted by the architect Gio Ponti on ceramic materials between the late 1920s and the early 1970s,with particular attention to applications in the Milanese context.Milan represents the main laboratory for experimenting with the figurative,plastic and chromatic potential of modern ceramic surfaces.The analysis of archival documentation preserved at the CSAC Archive in Parma,the Gio Ponti Archives in Milan and the Archivio Progetti at the Iuav University of Venice allows for a deeper understanding of the design path at different scales,from the design of specific lines of ceramics for industry,to their application in buildings.The second part of the analysis is aimed at tracing the conservation problems of ceramic surfaces,with the aim of highlighting both the cultural and technical aspects that are affecting the conservation of this heritage.Connected to the latter aspect is a focus on the principal deterioration phenomena of modern ceramic surfaces related to different types of substrates,providing in-depth knowledge that opens up new strategies for their conservation.
文摘目前还没有基于国产卫星的1 km分辨率的全天候陆表温度(LST)产品,FY-3D卫星提供了中分辨率成像仪(MERSI)Ⅱ型1 km分辨率晴空LST产品与微波成像仪(MWRI)25 km全天候LST产品,因此可结合两者优势开展全天候1 km分辨率LST的融合研究。基于地理加权回归(GWR)方法,选择海拔、FY-3D归一化植被指数和归一化建筑指数等建立GWR模型对FY-3D/MWRI 25 km LST降尺度到1 km,并与MERSI 1 km LST进行融合;同时针对MWRI轨道间隙,利用前后1天融合后的云覆盖像元1 km LST进行补值,可以得到接近全天候下的1 km LST。基于以上融合算法,选择了中国区域多个典型日期FY-3D/MERSI和MWRI LST官网产品进行了融合试验,并利用公开发布的全天候1 km LST产品(TPDC LST)对FY-3D 1 km LST融合结果进行了评估。研究结果表明,基于GWR法的LST降尺度方法,可以有效避免传统微波LST降尺度方法中存在的“斑块”效应和局地温度偏低等问题;LST融合结果有值率从融合前的22.4%~36.9%可提高到融合后69.3%~80.7%,融合结果与TPDC LST的空间决定系数为0.503~0.787,均方根误差为3.6~5.8 K,其中晴空为2.6~4.9 K,云下为4.1~6.1 K;分析还表明目前官网产品FY-3D/MERSI和MWRI LST均存在缺值较多与精度偏低等问题,显示其存在较大改进潜力,这有利于进一步改进FY-3D LST融合质量。
基金supported by the National Natural Science Foundation of China(Grant Nos.42377182,52079133 and 41931295).
文摘The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.