Weathered rock(especially granite)slopes are prone to failure under the action of rainfall,making it necessary to study the response of weathered rock slope to rainfall infiltration for landslide prevention.In this st...Weathered rock(especially granite)slopes are prone to failure under the action of rainfall,making it necessary to study the response of weathered rock slope to rainfall infiltration for landslide prevention.In this study,a series of model tests of weathered rock slope under different conditions were conducted.The matric suction,volumetric water content,earth pressure and deformation of slope were monitored in real time during rainfall.The response of the slope to rainfall infiltration,failure process and failure mode of slope under different conditions were analyzed,and the early warning criterion for the failure of weathered rock slope caused by rainfall was studied.The results show that the slope deformation evolution process under rainfall condition was closely related to the dissipation of matric suction.When the distribution of the matrix suction(or water content)of slope met the condition that the resistance to sliding of the slip-mass was overcome,the displacement increased sharply and landslide occurred.Three factors including rainfall process,lithologic condition and excavation condition significantly affect the response of weathered rock slope to rainfall.It can be found from the test results under different conditions that compared with intermittent rainfall condition,the rainfall intensity and infiltration depth were smaller when the slope entering accelerated deformation stage under the condition of incremental rainfall.The accumulated rainfall when weathered clastic landslide occurring was greater than that of weathered granite,which results in greater disaster risk.The excavation angle and moisture distribution of a slope were the main factors affecting the stability of a slope.In addition,the evolution processes and critical displacement velocities of slopes were studied by combining the deformation curves and matrix suction curves,which can be used as reference for early warning of rainfall-induced weathered rock landslide.展开更多
Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the d...Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.展开更多
This paper presents a study on the gravityinduced rock slope deformation observed along the Nujiang River in China. We performed a comprehensive field investigation and analysis to identify the deformation pattern of ...This paper presents a study on the gravityinduced rock slope deformation observed along the Nujiang River in China. We performed a comprehensive field investigation and analysis to identify the deformation pattern of the slope and its triggering factors. Moreover, a geologicalevolutionary model was developed, and it considers the effects of river incision and rock mass degradation caused by weathering and simulates the mechanisms underlying the initiation and progression of the slope deformation. The results support the proposed failure mechanism in which fractures within the slope are induced by rock mass degradation caused by weathering. Importantly, the modeling reveals that compressional deformation at the toe of the slope results in a tensile failure in the upper portion of the slope, demonstrating that the rock mass in the slope toe is the key factor inducing slope deformation. This analysis of slope deformation and its spatial and temporal correlations with rock weathering and river incision reveal the main triggering factors that control the evolution of the studied slope and provide insights into the deformation process.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52179110,51309025,41877280 and 41672320)Geological Survey project of China Geological Survey(Nos.DD20160257,DD20190263,121201009000150023,202007000000180506).
文摘Weathered rock(especially granite)slopes are prone to failure under the action of rainfall,making it necessary to study the response of weathered rock slope to rainfall infiltration for landslide prevention.In this study,a series of model tests of weathered rock slope under different conditions were conducted.The matric suction,volumetric water content,earth pressure and deformation of slope were monitored in real time during rainfall.The response of the slope to rainfall infiltration,failure process and failure mode of slope under different conditions were analyzed,and the early warning criterion for the failure of weathered rock slope caused by rainfall was studied.The results show that the slope deformation evolution process under rainfall condition was closely related to the dissipation of matric suction.When the distribution of the matrix suction(or water content)of slope met the condition that the resistance to sliding of the slip-mass was overcome,the displacement increased sharply and landslide occurred.Three factors including rainfall process,lithologic condition and excavation condition significantly affect the response of weathered rock slope to rainfall.It can be found from the test results under different conditions that compared with intermittent rainfall condition,the rainfall intensity and infiltration depth were smaller when the slope entering accelerated deformation stage under the condition of incremental rainfall.The accumulated rainfall when weathered clastic landslide occurring was greater than that of weathered granite,which results in greater disaster risk.The excavation angle and moisture distribution of a slope were the main factors affecting the stability of a slope.In addition,the evolution processes and critical displacement velocities of slopes were studied by combining the deformation curves and matrix suction curves,which can be used as reference for early warning of rainfall-induced weathered rock landslide.
基金supported by Central Guiding Local Science and Technology Development Special Fund Project(No.ZYYD2023B02)the National Natural Science Foundation of China(Nos.52078432 and 52168066)the Scientific Research Project of China Railway First Survey and Design Institute Group Co.(No.20-06).
文摘Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes.
基金Supported by the National Natural Science Foundation of China(Grant Nos. 41521002,41572283 and 41130745)supported by the Funding of Science and Technology Office of Sichuan Province (Grant Nos. 2015JQ0020)
文摘This paper presents a study on the gravityinduced rock slope deformation observed along the Nujiang River in China. We performed a comprehensive field investigation and analysis to identify the deformation pattern of the slope and its triggering factors. Moreover, a geologicalevolutionary model was developed, and it considers the effects of river incision and rock mass degradation caused by weathering and simulates the mechanisms underlying the initiation and progression of the slope deformation. The results support the proposed failure mechanism in which fractures within the slope are induced by rock mass degradation caused by weathering. Importantly, the modeling reveals that compressional deformation at the toe of the slope results in a tensile failure in the upper portion of the slope, demonstrating that the rock mass in the slope toe is the key factor inducing slope deformation. This analysis of slope deformation and its spatial and temporal correlations with rock weathering and river incision reveal the main triggering factors that control the evolution of the studied slope and provide insights into the deformation process.