Web-log contains a lot of information related with user activities on the Internet. How to mine user browsing interest patterns effectively is an important and challengeable research topic. On the analysis of the pres...Web-log contains a lot of information related with user activities on the Internet. How to mine user browsing interest patterns effectively is an important and challengeable research topic. On the analysis of the present algorithm’s advantages and disadvantages we propose a new concept: support-interest. Its key insight is that visitor will backtrack if they do not find the information where they expect. And the point from where they backtrack is the expected location for the page. We present User Access Matrix and the corresponding algorithm for discovering such expected locations that can handle page caching by the browser. Since the URL-URL matrix is a sparse matrix which can be represented by List of 3-tuples, we can mine user preferred sub-paths from the computation of this matrix. Accordingly, all the sub-paths are merged, and user preferred paths are formed. Experiments showed that it was accurate and scalable. It’s suitable for website based application, such as to optimize website’s topological structure or to design personalized services. Key words Web Mining - user preferred path - Web-log - support-interest - personalized services CLC number TP 391 Foundation item: Supported by the National High Technology Development (863 program of China) (2001AA113182)Biography: ZHOU Hong-fang (1976-), female.Ph. D candidate, research direction: data mining and knowledge discovery in databases.展开更多
Due to a great deal of valuable information contained in the Web log file, the result of Web mining can be used to enhance the decision making for electronic commerce (EC) operation and management. Because of ambiguo...Due to a great deal of valuable information contained in the Web log file, the result of Web mining can be used to enhance the decision making for electronic commerce (EC) operation and management. Because of ambiguous and abundance of the Web log file, the least decision making model based on rough set theory was presented for Web mining. And an example was given to explain the model. The model can predigest the decision making table, so that the least solution of the table can be acquired. According to the least solution, the corresponding decision for individual service can be made in sequence. Web mining based on rough set theory is also currently the original and particular method.展开更多
Improvement on mining the frequently visited groups of web pages was studied. First, in the data preprocessing phrase, we introduce an extra frame filtering step that reduces the negative influence of frame pages on t...Improvement on mining the frequently visited groups of web pages was studied. First, in the data preprocessing phrase, we introduce an extra frame filtering step that reduces the negative influence of frame pages on the result page groups. Through recognizing the frame pages in the site documents and constructing the frame subframe relation set, the subframe pages that influence the final mining result can be efficiently filtered. Second, we enhance the mining algorithm with the consideration of both the site topology and the content of the web pages. By the introduction of the normalized content link ratio of the web page and the group interlink degree of the page group, the enhanced algorithm concentrates more on the content pages that are less interlinked together. The experiments show that the new approach can effectively reveal more interesting page groups, which would not be found without these enhancements.展开更多
The backdoor or information leak of Web servers can be detected by using Web Mining techniques on some abnormal Web log and Web application log data. The security of Web servers can be enhanced and the damage of illeg...The backdoor or information leak of Web servers can be detected by using Web Mining techniques on some abnormal Web log and Web application log data. The security of Web servers can be enhanced and the damage of illegal access can be avoided. Firstly, the system for discovering the patterns of information leakages in CGI scripts from Web log data was proposed. Secondly, those patterns for system administrators to modify their codes and enhance their Web site security were provided. The following aspects were described: one is to combine web application log with web log to extract more information,so web data mining could be used to mine web log for discovering the information that firewall and Information Detection System cannot find. Another approach is to propose an operation module of web site to enhance Web site security. In cluster server session, Density -Based Clustering technique is used to reduce resource cost and obtain better efficiency.展开更多
A semantic session analysis method partitioning Web usage logs is presented. Semantic Web usage log preparation model enhances usage logs with semantic. The Markov chain model based on ontology semantic measurement is...A semantic session analysis method partitioning Web usage logs is presented. Semantic Web usage log preparation model enhances usage logs with semantic. The Markov chain model based on ontology semantic measurement is used to identifying which active session a request should belong to. The competitive method is applied to determine the end of the sessions. Compared with other algorithms, more successful sessions are additionally detected by semantic outlier analysis.展开更多
文摘Web-log contains a lot of information related with user activities on the Internet. How to mine user browsing interest patterns effectively is an important and challengeable research topic. On the analysis of the present algorithm’s advantages and disadvantages we propose a new concept: support-interest. Its key insight is that visitor will backtrack if they do not find the information where they expect. And the point from where they backtrack is the expected location for the page. We present User Access Matrix and the corresponding algorithm for discovering such expected locations that can handle page caching by the browser. Since the URL-URL matrix is a sparse matrix which can be represented by List of 3-tuples, we can mine user preferred sub-paths from the computation of this matrix. Accordingly, all the sub-paths are merged, and user preferred paths are formed. Experiments showed that it was accurate and scalable. It’s suitable for website based application, such as to optimize website’s topological structure or to design personalized services. Key words Web Mining - user preferred path - Web-log - support-interest - personalized services CLC number TP 391 Foundation item: Supported by the National High Technology Development (863 program of China) (2001AA113182)Biography: ZHOU Hong-fang (1976-), female.Ph. D candidate, research direction: data mining and knowledge discovery in databases.
文摘Due to a great deal of valuable information contained in the Web log file, the result of Web mining can be used to enhance the decision making for electronic commerce (EC) operation and management. Because of ambiguous and abundance of the Web log file, the least decision making model based on rough set theory was presented for Web mining. And an example was given to explain the model. The model can predigest the decision making table, so that the least solution of the table can be acquired. According to the least solution, the corresponding decision for individual service can be made in sequence. Web mining based on rough set theory is also currently the original and particular method.
文摘Improvement on mining the frequently visited groups of web pages was studied. First, in the data preprocessing phrase, we introduce an extra frame filtering step that reduces the negative influence of frame pages on the result page groups. Through recognizing the frame pages in the site documents and constructing the frame subframe relation set, the subframe pages that influence the final mining result can be efficiently filtered. Second, we enhance the mining algorithm with the consideration of both the site topology and the content of the web pages. By the introduction of the normalized content link ratio of the web page and the group interlink degree of the page group, the enhanced algorithm concentrates more on the content pages that are less interlinked together. The experiments show that the new approach can effectively reveal more interesting page groups, which would not be found without these enhancements.
文摘The backdoor or information leak of Web servers can be detected by using Web Mining techniques on some abnormal Web log and Web application log data. The security of Web servers can be enhanced and the damage of illegal access can be avoided. Firstly, the system for discovering the patterns of information leakages in CGI scripts from Web log data was proposed. Secondly, those patterns for system administrators to modify their codes and enhance their Web site security were provided. The following aspects were described: one is to combine web application log with web log to extract more information,so web data mining could be used to mine web log for discovering the information that firewall and Information Detection System cannot find. Another approach is to propose an operation module of web site to enhance Web site security. In cluster server session, Density -Based Clustering technique is used to reduce resource cost and obtain better efficiency.
基金Supported by the Huo Yingdong Education Foundation of China(91101)
文摘A semantic session analysis method partitioning Web usage logs is presented. Semantic Web usage log preparation model enhances usage logs with semantic. The Markov chain model based on ontology semantic measurement is used to identifying which active session a request should belong to. The competitive method is applied to determine the end of the sessions. Compared with other algorithms, more successful sessions are additionally detected by semantic outlier analysis.