Web services are provided as reusable software components in the services-oriented architecture.More complicated composite services can be combined from these components to satisfy the user requirements represented as...Web services are provided as reusable software components in the services-oriented architecture.More complicated composite services can be combined from these components to satisfy the user requirements represented as a workflow with specified Quality of Service(QoS)limitations.The workflow consists of tasks where many services can be considered for each task.Searching for optimal services combination and optimizing the overall QoS limitations is a Non-deterministic Polynomial(NP)-hard problem.This work focuses on the Web Service Composition(WSC)problem and proposes a new service composition algorithm based on the micro-bats behavior while hunting the prey.The proposed algorithm determines the optimal combination of the web services to satisfy the complex user needs.It also addresses the Bat Algorithm(BA)shortcomings,such as the tradeoff among exploration and exploitation searching mechanisms,local optima,and convergence rate.The proposed enhancement includes a developed cooperative and adaptive population initialization mechanism.An elitist mechanism is utilized to address the BA convergence rate.The tradeoff between exploration and exploitation is handled through a neighborhood search mechanism.Several benchmark datasets are selected to evaluate the proposed bat algorithm’s performance.The simulation results are estimated using the average fitness value,the standard deviation of the fitness value,and an average of the execution time and compared with four bat-inspired algorithms.It is observed from the simulation results that introduced enhancement obtains significant results.展开更多
In the Internet of Things(IoT),the users have complex needs,and the Web Service Composition(WSC)was introduced to address these needs.The WSC’s main objective is to search for the optimal combination of web services ...In the Internet of Things(IoT),the users have complex needs,and the Web Service Composition(WSC)was introduced to address these needs.The WSC’s main objective is to search for the optimal combination of web services in response to the user needs and the level of Quality of Services(QoS)constraints.The challenge of this problem is the huge number of web services that achieve similar functionality with different levels of QoS constraints.In this paper,we introduce an extension of our previous works on the Artificial Bee Colony(ABC)and Bat Algorithm(BA).A new hybrid algorithm was proposed between the ABC and BA to achieve a better tradeoff between local exploitation and global search.The bat agent is used to improve the solution of exhausted bees after a threshold(limits),and also an Elitist Strategy(ES)is added to BA to increase the convergence rate.The performance and convergence behavior of the proposed hybrid algorithm was tested using extensive comparative experiments with current state-ofthe-art nature-inspired algorithms on 12 benchmark datasets using three evaluation criteria(average fitness values,best fitness values,and execution time)that were measured for 30 different runs.These datasets are created from real-world datasets and artificially to form different scale sizes of WSC datasets.The results show that the proposed algorithm enhances the search performance and convergence rate on finding the near-optimal web services combination compared to competitors.TheWilcoxon signed-rank significant test is usedwhere the proposed algorithm results significantly differ fromother algorithms on 100%of datasets.展开更多
FL-Online(http://fanlab.ac.cn) is an out-of-box modern web service featuring a user-friendly interface and simplified parameters, providing academic users with access to a series of online programs for biomolecular cr...FL-Online(http://fanlab.ac.cn) is an out-of-box modern web service featuring a user-friendly interface and simplified parameters, providing academic users with access to a series of online programs for biomolecular crystallography, including SAPI-online, OASIS-online, C-IPCAS-online and a series of upcoming software releases. Meanwhile, it is a highly scalable and maintainable web application framework that provides a powerful and flexible solution for academic web development needs. All the codes are open-source under MIT licenses in GitHub.展开更多
基金The author extend their appreciation to Deputyship for research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IF-PSAU-2022/01/19619).
文摘Web services are provided as reusable software components in the services-oriented architecture.More complicated composite services can be combined from these components to satisfy the user requirements represented as a workflow with specified Quality of Service(QoS)limitations.The workflow consists of tasks where many services can be considered for each task.Searching for optimal services combination and optimizing the overall QoS limitations is a Non-deterministic Polynomial(NP)-hard problem.This work focuses on the Web Service Composition(WSC)problem and proposes a new service composition algorithm based on the micro-bats behavior while hunting the prey.The proposed algorithm determines the optimal combination of the web services to satisfy the complex user needs.It also addresses the Bat Algorithm(BA)shortcomings,such as the tradeoff among exploration and exploitation searching mechanisms,local optima,and convergence rate.The proposed enhancement includes a developed cooperative and adaptive population initialization mechanism.An elitist mechanism is utilized to address the BA convergence rate.The tradeoff between exploration and exploitation is handled through a neighborhood search mechanism.Several benchmark datasets are selected to evaluate the proposed bat algorithm’s performance.The simulation results are estimated using the average fitness value,the standard deviation of the fitness value,and an average of the execution time and compared with four bat-inspired algorithms.It is observed from the simulation results that introduced enhancement obtains significant results.
基金The authors extend their appreciation to the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number 2022/01/22636.
文摘In the Internet of Things(IoT),the users have complex needs,and the Web Service Composition(WSC)was introduced to address these needs.The WSC’s main objective is to search for the optimal combination of web services in response to the user needs and the level of Quality of Services(QoS)constraints.The challenge of this problem is the huge number of web services that achieve similar functionality with different levels of QoS constraints.In this paper,we introduce an extension of our previous works on the Artificial Bee Colony(ABC)and Bat Algorithm(BA).A new hybrid algorithm was proposed between the ABC and BA to achieve a better tradeoff between local exploitation and global search.The bat agent is used to improve the solution of exhausted bees after a threshold(limits),and also an Elitist Strategy(ES)is added to BA to increase the convergence rate.The performance and convergence behavior of the proposed hybrid algorithm was tested using extensive comparative experiments with current state-ofthe-art nature-inspired algorithms on 12 benchmark datasets using three evaluation criteria(average fitness values,best fitness values,and execution time)that were measured for 30 different runs.These datasets are created from real-world datasets and artificially to form different scale sizes of WSC datasets.The results show that the proposed algorithm enhances the search performance and convergence rate on finding the near-optimal web services combination compared to competitors.TheWilcoxon signed-rank significant test is usedwhere the proposed algorithm results significantly differ fromother algorithms on 100%of datasets.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.32371280 and T2350011)。
文摘FL-Online(http://fanlab.ac.cn) is an out-of-box modern web service featuring a user-friendly interface and simplified parameters, providing academic users with access to a series of online programs for biomolecular crystallography, including SAPI-online, OASIS-online, C-IPCAS-online and a series of upcoming software releases. Meanwhile, it is a highly scalable and maintainable web application framework that provides a powerful and flexible solution for academic web development needs. All the codes are open-source under MIT licenses in GitHub.